| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.45 | GIF version | ||
| Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm3.45 | ⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | anim1d 336 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ssrmof 3247 rabss2 3267 lmtopcnp 14570 |
| Copyright terms: Public domain | W3C validator |