| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim1d | GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm3.45 597 exdistrfor 1824 mopick2 2138 ssrexf 3256 ssrexv 3259 ssdif 3309 ssrin 3399 reupick 3458 disjss1 4029 copsexg 4292 po3nr 4361 coss2 4838 fununi 5347 fiintim 7035 recexprlemlol 7746 recexprlemupu 7748 icoshft 10119 2ffzeq 10270 qbtwnxr 10407 ico0 10411 r19.2uz 11348 bezoutlemzz 12367 bezoutlemaz 12368 ptex 13140 rnglidlmmgm 14302 neiss 14666 uptx 14790 txcn 14791 bj-charfundcALT 15819 |
| Copyright terms: Public domain | W3C validator |