ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim1d GIF version

Theorem anim1d 336
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
anim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem anim1d
StepHypRef Expression
1 anim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 21 . 2 (𝜑 → (𝜃𝜃))
31, 2anim12d 335 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm3.45  597  exdistrfor  1814  mopick2  2128  ssrexf  3246  ssrexv  3249  ssdif  3299  ssrin  3389  reupick  3448  disjss1  4017  copsexg  4278  po3nr  4346  coss2  4823  fununi  5327  fiintim  7001  recexprlemlol  7712  recexprlemupu  7714  icoshft  10084  2ffzeq  10235  qbtwnxr  10366  ico0  10370  r19.2uz  11177  bezoutlemzz  12196  bezoutlemaz  12197  ptex  12968  rnglidlmmgm  14130  neiss  14494  uptx  14618  txcn  14619  bj-charfundcALT  15563
  Copyright terms: Public domain W3C validator