| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim1d | GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm3.45 599 exdistrfor 1846 mopick2 2161 ssrexf 3286 ssrexv 3289 ssdif 3339 ssrin 3429 reupick 3488 disjss1 4065 copsexg 4330 po3nr 4401 coss2 4878 fununi 5389 fiintim 7101 recexprlemlol 7821 recexprlemupu 7823 icoshft 10194 2ffzeq 10345 qbtwnxr 10485 ico0 10489 r19.2uz 11512 bezoutlemzz 12531 bezoutlemaz 12532 ptex 13305 rnglidlmmgm 14468 neiss 14832 uptx 14956 txcn 14957 bj-charfundcALT 16196 |
| Copyright terms: Public domain | W3C validator |