Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anim1d | GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 333 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm3.45 587 exdistrfor 1788 mopick2 2097 ssrexf 3204 ssrexv 3207 ssdif 3257 ssrin 3347 reupick 3406 disjss1 3965 copsexg 4222 po3nr 4288 coss2 4760 fununi 5256 fiintim 6894 recexprlemlol 7567 recexprlemupu 7569 icoshft 9926 2ffzeq 10076 qbtwnxr 10193 ico0 10197 r19.2uz 10935 bezoutlemzz 11935 bezoutlemaz 11936 neiss 12790 uptx 12914 txcn 12915 bj-charfundcALT 13691 |
Copyright terms: Public domain | W3C validator |