![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim1d | GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm3.45 597 exdistrfor 1811 mopick2 2125 ssrexf 3241 ssrexv 3244 ssdif 3294 ssrin 3384 reupick 3443 disjss1 4012 copsexg 4273 po3nr 4341 coss2 4818 fununi 5322 fiintim 6985 recexprlemlol 7686 recexprlemupu 7688 icoshft 10056 2ffzeq 10207 qbtwnxr 10326 ico0 10330 r19.2uz 11137 bezoutlemzz 12139 bezoutlemaz 12140 ptex 12875 rnglidlmmgm 13992 neiss 14318 uptx 14442 txcn 14443 bj-charfundcALT 15301 |
Copyright terms: Public domain | W3C validator |