| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anim1d | GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm3.45 597 exdistrfor 1814 mopick2 2128 ssrexf 3245 ssrexv 3248 ssdif 3298 ssrin 3388 reupick 3447 disjss1 4016 copsexg 4277 po3nr 4345 coss2 4822 fununi 5326 fiintim 6992 recexprlemlol 7693 recexprlemupu 7695 icoshft 10065 2ffzeq 10216 qbtwnxr 10347 ico0 10351 r19.2uz 11158 bezoutlemzz 12169 bezoutlemaz 12170 ptex 12935 rnglidlmmgm 14052 neiss 14386 uptx 14510 txcn 14511 bj-charfundcALT 15455 | 
| Copyright terms: Public domain | W3C validator |