| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anim1d | GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm3.45 599 exdistrfor 1846 mopick2 2161 ssrexf 3286 ssrexv 3289 ssdif 3339 ssrin 3429 reupick 3488 disjss1 4064 copsexg 4329 po3nr 4398 coss2 4875 fununi 5385 fiintim 7081 recexprlemlol 7801 recexprlemupu 7803 icoshft 10174 2ffzeq 10325 qbtwnxr 10464 ico0 10468 r19.2uz 11490 bezoutlemzz 12509 bezoutlemaz 12510 ptex 13283 rnglidlmmgm 14445 neiss 14809 uptx 14933 txcn 14934 bj-charfundcALT 16102 |
| Copyright terms: Public domain | W3C validator |