![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim1d | GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 331 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm3.45 567 exdistrfor 1739 mopick2 2043 ssrexv 3109 ssdif 3158 ssrin 3248 reupick 3307 disjss1 3858 copsexg 4104 po3nr 4170 coss2 4633 fununi 5127 fiintim 6746 recexprlemlol 7335 recexprlemupu 7337 icoshft 9614 2ffzeq 9759 qbtwnxr 9876 ico0 9880 r19.2uz 10605 bezoutlemzz 11483 bezoutlemaz 11484 neiss 12101 uptx 12224 txcn 12225 |
Copyright terms: Public domain | W3C validator |