![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anim1d | GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 335 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm3.45 597 exdistrfor 1798 mopick2 2107 ssrexf 3215 ssrexv 3218 ssdif 3268 ssrin 3358 reupick 3417 disjss1 3981 copsexg 4238 po3nr 4304 coss2 4776 fununi 5276 fiintim 6918 recexprlemlol 7600 recexprlemupu 7602 icoshft 9959 2ffzeq 10109 qbtwnxr 10226 ico0 10230 r19.2uz 10968 bezoutlemzz 11968 bezoutlemaz 11969 neiss 13201 uptx 13325 txcn 13326 bj-charfundcALT 14101 |
Copyright terms: Public domain | W3C validator |