ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim1d GIF version

Theorem anim1d 332
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
anim1d.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anim1d (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))

Proof of Theorem anim1d
StepHypRef Expression
1 anim1d.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 21 . 2 (𝜑 → (𝜃𝜃))
31, 2anim12d 331 1 (𝜑 → ((𝜓𝜃) → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm3.45  567  exdistrfor  1739  mopick2  2043  ssrexv  3109  ssdif  3158  ssrin  3248  reupick  3307  disjss1  3858  copsexg  4104  po3nr  4170  coss2  4633  fununi  5127  fiintim  6746  recexprlemlol  7335  recexprlemupu  7337  icoshft  9614  2ffzeq  9759  qbtwnxr  9876  ico0  9880  r19.2uz  10605  bezoutlemzz  11483  bezoutlemaz  11484  neiss  12101  uptx  12224  txcn  12225
  Copyright terms: Public domain W3C validator