| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2203 funfvbrb 5692 f1ocnv2d 6149 1stconst 6306 2ndconst 6307 cnvf1o 6310 ersymb 6633 swoer 6647 erth 6665 pw2f1odclem 6930 enen1 6936 enen2 6937 domen1 6938 domen2 6939 xpmapenlem 6945 fidifsnen 6966 fundmfibi 7039 f1dmvrnfibi 7045 ordiso2 7136 omniwomnimkv 7268 enwomnilem 7270 nninfwlpoimlemginf 7277 exmidapne 7371 infregelbex 9718 fzsplit2 10171 fseq1p1m1 10215 elfz2nn0 10233 btwnzge0 10441 modqsubdir 10536 zesq 10801 hashprg 10951 rereb 11145 abslt 11370 absle 11371 maxleastb 11496 maxltsup 11500 xrltmaxsup 11539 xrmaxltsup 11540 iserex 11621 mptfzshft 11724 fsumrev 11725 fprodrev 11901 dvdsadd2b 12122 nn0ob 12190 bitsfzo 12237 dfgcd3 12302 dfgcd2 12306 dvdsmulgcd 12317 lcmgcdeq 12376 isprm5 12435 qden1elz 12498 issubmnd 13245 mhmf1o 13273 subsubm 13286 resmhm2b 13292 grpinvid1 13355 grpinvid2 13356 subsubg 13504 ssnmz 13518 ghmf1 13580 kerf1ghm 13581 ghmf1o 13582 conjnmzb 13587 0unit 13862 rhmf1o 13901 subsubrng 13947 subrgunit 13972 subsubrg 13978 islss3 14112 islss4 14115 lspsnel6 14141 lspsneq0b 14160 dflidl2rng 14214 cncnp 14673 xmetxpbl 14951 dedekindicc 15076 coseq0q4123 15277 coseq0negpitopi 15279 relogeftb 15308 relogbcxpbap 15408 2omap 15894 pwf1oexmid 15898 isomninnlem 15931 apdiff 15949 iswomninnlem 15950 ismkvnnlem 15953 redcwlpolemeq1 15955 |
| Copyright terms: Public domain | W3C validator |