| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2204 funfvbrb 5693 f1ocnv2d 6150 1stconst 6307 2ndconst 6308 cnvf1o 6311 ersymb 6634 swoer 6648 erth 6666 pw2f1odclem 6931 enen1 6937 enen2 6938 domen1 6939 domen2 6940 xpmapenlem 6946 fidifsnen 6967 fundmfibi 7040 f1dmvrnfibi 7046 ordiso2 7137 omniwomnimkv 7269 enwomnilem 7271 nninfwlpoimlemginf 7278 exmidapne 7372 infregelbex 9719 fzsplit2 10172 fseq1p1m1 10216 elfz2nn0 10234 btwnzge0 10443 modqsubdir 10538 zesq 10803 hashprg 10953 rereb 11174 abslt 11399 absle 11400 maxleastb 11525 maxltsup 11529 xrltmaxsup 11568 xrmaxltsup 11569 iserex 11650 mptfzshft 11753 fsumrev 11754 fprodrev 11930 dvdsadd2b 12151 nn0ob 12219 bitsfzo 12266 dfgcd3 12331 dfgcd2 12335 dvdsmulgcd 12346 lcmgcdeq 12405 isprm5 12464 qden1elz 12527 issubmnd 13274 mhmf1o 13302 subsubm 13315 resmhm2b 13321 grpinvid1 13384 grpinvid2 13385 subsubg 13533 ssnmz 13547 ghmf1 13609 kerf1ghm 13610 ghmf1o 13611 conjnmzb 13616 0unit 13891 rhmf1o 13930 subsubrng 13976 subrgunit 14001 subsubrg 14007 islss3 14141 islss4 14144 lspsnel6 14170 lspsneq0b 14189 dflidl2rng 14243 cncnp 14702 xmetxpbl 14980 dedekindicc 15105 coseq0q4123 15306 coseq0negpitopi 15308 relogeftb 15337 relogbcxpbap 15437 2omap 15932 pwf1oexmid 15936 isomninnlem 15969 apdiff 15987 iswomninnlem 15988 ismkvnnlem 15991 redcwlpolemeq1 15993 |
| Copyright terms: Public domain | W3C validator |