| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2195 funfvbrb 5678 f1ocnv2d 6131 1stconst 6288 2ndconst 6289 cnvf1o 6292 ersymb 6615 swoer 6629 erth 6647 pw2f1odclem 6904 enen1 6910 enen2 6911 domen1 6912 domen2 6913 xpmapenlem 6919 fidifsnen 6940 fundmfibi 7013 f1dmvrnfibi 7019 ordiso2 7110 omniwomnimkv 7242 enwomnilem 7244 nninfwlpoimlemginf 7251 exmidapne 7345 infregelbex 9691 fzsplit2 10144 fseq1p1m1 10188 elfz2nn0 10206 btwnzge0 10409 modqsubdir 10504 zesq 10769 hashprg 10919 rereb 11047 abslt 11272 absle 11273 maxleastb 11398 maxltsup 11402 xrltmaxsup 11441 xrmaxltsup 11442 iserex 11523 mptfzshft 11626 fsumrev 11627 fprodrev 11803 dvdsadd2b 12024 nn0ob 12092 bitsfzo 12139 dfgcd3 12204 dfgcd2 12208 dvdsmulgcd 12219 lcmgcdeq 12278 isprm5 12337 qden1elz 12400 issubmnd 13146 mhmf1o 13174 subsubm 13187 resmhm2b 13193 grpinvid1 13256 grpinvid2 13257 subsubg 13405 ssnmz 13419 ghmf1 13481 kerf1ghm 13482 ghmf1o 13483 conjnmzb 13488 0unit 13763 rhmf1o 13802 subsubrng 13848 subrgunit 13873 subsubrg 13879 islss3 14013 islss4 14016 lspsnel6 14042 lspsneq0b 14061 dflidl2rng 14115 cncnp 14574 xmetxpbl 14852 dedekindicc 14977 coseq0q4123 15178 coseq0negpitopi 15180 relogeftb 15209 relogbcxpbap 15309 2omap 15750 pwf1oexmid 15754 isomninnlem 15787 apdiff 15805 iswomninnlem 15806 ismkvnnlem 15809 redcwlpolemeq1 15811 |
| Copyright terms: Public domain | W3C validator |