| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 616 eqrdav 2228 funfvbrb 5747 f1ocnv2d 6208 1stconst 6365 2ndconst 6366 cnvf1o 6369 ersymb 6692 swoer 6706 erth 6724 pw2f1odclem 6991 enen1 6997 enen2 6998 domen1 6999 domen2 7000 xpmapenlem 7006 fidifsnen 7028 fundmfibi 7101 f1dmvrnfibi 7107 ordiso2 7198 omniwomnimkv 7330 enwomnilem 7332 nninfwlpoimlemginf 7339 pw1if 7406 exmidapne 7442 infregelbex 9789 fzsplit2 10242 fseq1p1m1 10286 elfz2nn0 10304 btwnzge0 10515 modqsubdir 10610 zesq 10875 hashprg 11025 rereb 11369 abslt 11594 absle 11595 maxleastb 11720 maxltsup 11724 xrltmaxsup 11763 xrmaxltsup 11764 iserex 11845 mptfzshft 11948 fsumrev 11949 fprodrev 12125 dvdsadd2b 12346 nn0ob 12414 bitsfzo 12461 dfgcd3 12526 dfgcd2 12530 dvdsmulgcd 12541 lcmgcdeq 12600 isprm5 12659 qden1elz 12722 issubmnd 13470 mhmf1o 13498 subsubm 13511 resmhm2b 13517 grpinvid1 13580 grpinvid2 13581 subsubg 13729 ssnmz 13743 ghmf1 13805 kerf1ghm 13806 ghmf1o 13807 conjnmzb 13812 0unit 14087 rhmf1o 14126 subsubrng 14172 subrgunit 14197 subsubrg 14203 islss3 14337 islss4 14340 lspsnel6 14366 lspsneq0b 14385 dflidl2rng 14439 cncnp 14898 xmetxpbl 15176 dedekindicc 15301 coseq0q4123 15502 coseq0negpitopi 15504 relogeftb 15533 relogbcxpbap 15633 2omap 16318 pw1map 16320 pwf1oexmid 16324 isomninnlem 16357 apdiff 16375 iswomninnlem 16376 ismkvnnlem 16379 redcwlpolemeq1 16381 |
| Copyright terms: Public domain | W3C validator |