| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2195 funfvbrb 5678 f1ocnv2d 6131 1stconst 6288 2ndconst 6289 cnvf1o 6292 ersymb 6615 swoer 6629 erth 6647 pw2f1odclem 6904 enen1 6910 enen2 6911 domen1 6912 domen2 6913 xpmapenlem 6919 fidifsnen 6940 fundmfibi 7013 f1dmvrnfibi 7019 ordiso2 7110 omniwomnimkv 7242 enwomnilem 7244 nninfwlpoimlemginf 7251 exmidapne 7343 infregelbex 9689 fzsplit2 10142 fseq1p1m1 10186 elfz2nn0 10204 btwnzge0 10407 modqsubdir 10502 zesq 10767 hashprg 10917 rereb 11045 abslt 11270 absle 11271 maxleastb 11396 maxltsup 11400 xrltmaxsup 11439 xrmaxltsup 11440 iserex 11521 mptfzshft 11624 fsumrev 11625 fprodrev 11801 dvdsadd2b 12022 nn0ob 12090 bitsfzo 12137 dfgcd3 12202 dfgcd2 12206 dvdsmulgcd 12217 lcmgcdeq 12276 isprm5 12335 qden1elz 12398 issubmnd 13144 mhmf1o 13172 subsubm 13185 resmhm2b 13191 grpinvid1 13254 grpinvid2 13255 subsubg 13403 ssnmz 13417 ghmf1 13479 kerf1ghm 13480 ghmf1o 13481 conjnmzb 13486 0unit 13761 rhmf1o 13800 subsubrng 13846 subrgunit 13871 subsubrg 13877 islss3 14011 islss4 14014 lspsnel6 14040 lspsneq0b 14059 dflidl2rng 14113 cncnp 14550 xmetxpbl 14828 dedekindicc 14953 coseq0q4123 15154 coseq0negpitopi 15156 relogeftb 15185 relogbcxpbap 15285 2omap 15726 pwf1oexmid 15730 isomninnlem 15761 apdiff 15779 iswomninnlem 15780 ismkvnnlem 15783 redcwlpolemeq1 15785 |
| Copyright terms: Public domain | W3C validator |