![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbida | GIF version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eqrdav 2176 funfvbrb 5630 f1ocnv2d 6075 1stconst 6222 2ndconst 6223 cnvf1o 6226 ersymb 6549 swoer 6563 erth 6579 enen1 6840 enen2 6841 domen1 6842 domen2 6843 xpmapenlem 6849 fidifsnen 6870 fundmfibi 6938 f1dmvrnfibi 6943 ordiso2 7034 omniwomnimkv 7165 enwomnilem 7167 nninfwlpoimlemginf 7174 exmidapne 7259 infregelbex 9598 fzsplit2 10050 fseq1p1m1 10094 elfz2nn0 10112 btwnzge0 10300 modqsubdir 10393 zesq 10639 hashprg 10788 rereb 10872 abslt 11097 absle 11098 maxleastb 11223 maxltsup 11227 xrltmaxsup 11265 xrmaxltsup 11266 iserex 11347 mptfzshft 11450 fsumrev 11451 fprodrev 11627 dvdsadd2b 11847 nn0ob 11913 dfgcd3 12011 dfgcd2 12015 dvdsmulgcd 12026 lcmgcdeq 12083 isprm5 12142 qden1elz 12205 issubmnd 12843 mhmf1o 12861 grpinvid1 12924 grpinvid2 12925 subsubg 13057 ssnmz 13071 0unit 13298 subrgunit 13360 subsubrg 13366 cncnp 13733 xmetxpbl 14011 dedekindicc 14114 coseq0q4123 14258 coseq0negpitopi 14260 relogeftb 14289 relogbcxpbap 14386 pwf1oexmid 14752 isomninnlem 14781 apdiff 14799 iswomninnlem 14800 ismkvnnlem 14803 redcwlpolemeq1 14805 |
Copyright terms: Public domain | W3C validator |