Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbida | GIF version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
4 | 3 | ex 114 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: eqrdav 2164 funfvbrb 5597 f1ocnv2d 6041 1stconst 6185 2ndconst 6186 cnvf1o 6189 ersymb 6511 swoer 6525 erth 6541 enen1 6802 enen2 6803 domen1 6804 domen2 6805 xpmapenlem 6811 fidifsnen 6832 fundmfibi 6900 f1dmvrnfibi 6905 ordiso2 6996 omniwomnimkv 7127 enwomnilem 7129 infregelbex 9532 fzsplit2 9981 fseq1p1m1 10025 elfz2nn0 10043 btwnzge0 10231 modqsubdir 10324 zesq 10569 hashprg 10717 rereb 10801 abslt 11026 absle 11027 maxleastb 11152 maxltsup 11156 xrltmaxsup 11194 xrmaxltsup 11195 iserex 11276 mptfzshft 11379 fsumrev 11380 fprodrev 11556 dvdsadd2b 11776 nn0ob 11841 dfgcd3 11939 dfgcd2 11943 dvdsmulgcd 11954 lcmgcdeq 12011 isprm5 12070 qden1elz 12133 cncnp 12830 xmetxpbl 13108 dedekindicc 13211 coseq0q4123 13355 coseq0negpitopi 13357 relogeftb 13386 relogbcxpbap 13483 pwf1oexmid 13839 isomninnlem 13869 apdiff 13887 iswomninnlem 13888 ismkvnnlem 13891 redcwlpolemeq1 13893 |
Copyright terms: Public domain | W3C validator |