![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbida | GIF version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biadanid 614 eqrdav 2192 funfvbrb 5672 f1ocnv2d 6124 1stconst 6276 2ndconst 6277 cnvf1o 6280 ersymb 6603 swoer 6617 erth 6635 pw2f1odclem 6892 enen1 6898 enen2 6899 domen1 6900 domen2 6901 xpmapenlem 6907 fidifsnen 6928 fundmfibi 6999 f1dmvrnfibi 7005 ordiso2 7096 omniwomnimkv 7228 enwomnilem 7230 nninfwlpoimlemginf 7237 exmidapne 7322 infregelbex 9666 fzsplit2 10119 fseq1p1m1 10163 elfz2nn0 10181 btwnzge0 10372 modqsubdir 10467 zesq 10732 hashprg 10882 rereb 11010 abslt 11235 absle 11236 maxleastb 11361 maxltsup 11365 xrltmaxsup 11403 xrmaxltsup 11404 iserex 11485 mptfzshft 11588 fsumrev 11589 fprodrev 11765 dvdsadd2b 11986 nn0ob 12052 dfgcd3 12150 dfgcd2 12154 dvdsmulgcd 12165 lcmgcdeq 12224 isprm5 12283 qden1elz 12346 issubmnd 13026 mhmf1o 13045 subsubm 13058 resmhm2b 13064 grpinvid1 13127 grpinvid2 13128 subsubg 13270 ssnmz 13284 ghmf1 13346 kerf1ghm 13347 ghmf1o 13348 conjnmzb 13353 0unit 13628 rhmf1o 13667 subsubrng 13713 subrgunit 13738 subsubrg 13744 islss3 13878 islss4 13881 lspsnel6 13907 lspsneq0b 13926 dflidl2rng 13980 cncnp 14409 xmetxpbl 14687 dedekindicc 14812 coseq0q4123 15010 coseq0negpitopi 15012 relogeftb 15041 relogbcxpbap 15138 pwf1oexmid 15560 isomninnlem 15590 apdiff 15608 iswomninnlem 15609 ismkvnnlem 15612 redcwlpolemeq1 15614 |
Copyright terms: Public domain | W3C validator |