| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbida | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
| 4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biadanid 614 eqrdav 2206 funfvbrb 5716 f1ocnv2d 6173 1stconst 6330 2ndconst 6331 cnvf1o 6334 ersymb 6657 swoer 6671 erth 6689 pw2f1odclem 6956 enen1 6962 enen2 6963 domen1 6964 domen2 6965 xpmapenlem 6971 fidifsnen 6993 fundmfibi 7066 f1dmvrnfibi 7072 ordiso2 7163 omniwomnimkv 7295 enwomnilem 7297 nninfwlpoimlemginf 7304 pw1if 7371 exmidapne 7407 infregelbex 9754 fzsplit2 10207 fseq1p1m1 10251 elfz2nn0 10269 btwnzge0 10480 modqsubdir 10575 zesq 10840 hashprg 10990 rereb 11289 abslt 11514 absle 11515 maxleastb 11640 maxltsup 11644 xrltmaxsup 11683 xrmaxltsup 11684 iserex 11765 mptfzshft 11868 fsumrev 11869 fprodrev 12045 dvdsadd2b 12266 nn0ob 12334 bitsfzo 12381 dfgcd3 12446 dfgcd2 12450 dvdsmulgcd 12461 lcmgcdeq 12520 isprm5 12579 qden1elz 12642 issubmnd 13389 mhmf1o 13417 subsubm 13430 resmhm2b 13436 grpinvid1 13499 grpinvid2 13500 subsubg 13648 ssnmz 13662 ghmf1 13724 kerf1ghm 13725 ghmf1o 13726 conjnmzb 13731 0unit 14006 rhmf1o 14045 subsubrng 14091 subrgunit 14116 subsubrg 14122 islss3 14256 islss4 14259 lspsnel6 14285 lspsneq0b 14304 dflidl2rng 14358 cncnp 14817 xmetxpbl 15095 dedekindicc 15220 coseq0q4123 15421 coseq0negpitopi 15423 relogeftb 15452 relogbcxpbap 15552 2omap 16132 pw1map 16134 pwf1oexmid 16138 isomninnlem 16171 apdiff 16189 iswomninnlem 16190 ismkvnnlem 16193 redcwlpolemeq1 16195 |
| Copyright terms: Public domain | W3C validator |