![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbida | GIF version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
impbida.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
impbida.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
impbida | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | impbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) | |
4 | 3 | ex 115 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: eqrdav 2176 funfvbrb 5629 f1ocnv2d 6074 1stconst 6221 2ndconst 6222 cnvf1o 6225 ersymb 6548 swoer 6562 erth 6578 enen1 6839 enen2 6840 domen1 6841 domen2 6842 xpmapenlem 6848 fidifsnen 6869 fundmfibi 6937 f1dmvrnfibi 6942 ordiso2 7033 omniwomnimkv 7164 enwomnilem 7166 nninfwlpoimlemginf 7173 exmidapne 7258 infregelbex 9597 fzsplit2 10049 fseq1p1m1 10093 elfz2nn0 10111 btwnzge0 10299 modqsubdir 10392 zesq 10638 hashprg 10787 rereb 10871 abslt 11096 absle 11097 maxleastb 11222 maxltsup 11226 xrltmaxsup 11264 xrmaxltsup 11265 iserex 11346 mptfzshft 11449 fsumrev 11450 fprodrev 11626 dvdsadd2b 11846 nn0ob 11912 dfgcd3 12010 dfgcd2 12014 dvdsmulgcd 12025 lcmgcdeq 12082 isprm5 12141 qden1elz 12204 issubmnd 12842 mhmf1o 12860 grpinvid1 12923 grpinvid2 12924 subsubg 13055 ssnmz 13069 0unit 13296 subrgunit 13358 subsubrg 13364 cncnp 13700 xmetxpbl 13978 dedekindicc 14081 coseq0q4123 14225 coseq0negpitopi 14227 relogeftb 14256 relogbcxpbap 14353 pwf1oexmid 14719 isomninnlem 14748 apdiff 14766 iswomninnlem 14767 ismkvnnlem 14770 redcwlpolemeq1 14772 |
Copyright terms: Public domain | W3C validator |