| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrmof | GIF version | ||
| Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
| Ref | Expression |
|---|---|
| ssrexf.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrexf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| ssrmof | ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 2 | ssrexf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss2f 3174 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 4 | 3 | biimpi 120 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 5 | pm3.45 597 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 5 | alimi 1469 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 7 | moim 2109 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑)) → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 8 | 4, 6, 7 | 3syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 9 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 10 | df-rmo 2483 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 11 | 8, 9, 10 | 3imtr4g 205 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃*wmo 2046 ∈ wcel 2167 Ⅎwnfc 2326 ∃*wrmo 2478 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rmo 2483 df-in 3163 df-ss 3170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |