ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrmof GIF version

Theorem ssrmof 3205
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrmof (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5 𝑥𝐴
2 ssrexf.2 . . . . 5 𝑥𝐵
31, 2dfss2f 3133 . . . 4 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
43biimpi 119 . . 3 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
5 pm3.45 587 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
65alimi 1443 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
7 moim 2078 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)) → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
84, 6, 73syl 17 . 2 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
9 df-rmo 2452 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
10 df-rmo 2452 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
118, 9, 103imtr4g 204 1 (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  ∃*wmo 2015  wcel 2136  wnfc 2295  ∃*wrmo 2447  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rmo 2452  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator