ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrmof GIF version

Theorem ssrmof 3267
Description: "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrmof (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))

Proof of Theorem ssrmof
StepHypRef Expression
1 ssrexf.1 . . . . 5 𝑥𝐴
2 ssrexf.2 . . . . 5 𝑥𝐵
31, 2dfss2f 3195 . . . 4 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
43biimpi 120 . . 3 (𝐴𝐵 → ∀𝑥(𝑥𝐴𝑥𝐵))
5 pm3.45 599 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
65alimi 1481 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
7 moim 2122 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)) → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
84, 6, 73syl 17 . 2 (𝐴𝐵 → (∃*𝑥(𝑥𝐵𝜑) → ∃*𝑥(𝑥𝐴𝜑)))
9 df-rmo 2496 . 2 (∃*𝑥𝐵 𝜑 ↔ ∃*𝑥(𝑥𝐵𝜑))
10 df-rmo 2496 . 2 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
118, 9, 103imtr4g 205 1 (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1373  ∃*wmo 2058  wcel 2180  wnfc 2339  ∃*wrmo 2491  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rmo 2496  df-in 3183  df-ss 3190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator