ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabss2 GIF version

Theorem rabss2 3225
Description: Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rabss2 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabss2
StepHypRef Expression
1 pm3.45 587 . . . 4 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
21alimi 1443 . . 3 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
3 dfss2 3131 . . 3 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
4 ss2ab 3210 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
52, 3, 43imtr4i 200 . 2 (𝐴𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥 ∣ (𝑥𝐵𝜑)})
6 df-rab 2453 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
7 df-rab 2453 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
85, 6, 73sstr4g 3185 1 (𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1341  wcel 2136  {cab 2151  {crab 2448  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-in 3122  df-ss 3129
This theorem is referenced by:  sess2  4316  zsupssdc  11887  dvfgg  13297
  Copyright terms: Public domain W3C validator