Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmtopcnp GIF version

Theorem lmtopcnp 12433
 Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcnp.k (𝜑𝐾 ∈ Top)
lmcnp.4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
Assertion
Ref Expression
lmtopcnp (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmtopcnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.3 . . . . . . . 8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmrcl 12374 . . . . . . . 8 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
31, 2syl 14 . . . . . . 7 (𝜑𝐽 ∈ Top)
4 toptopon2 12200 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 121 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 lmcnp.k . . . . . . 7 (𝜑𝐾 ∈ Top)
7 toptopon2 12200 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
86, 7sylib 121 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
9 lmcnp.4 . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10 cnpf2 12390 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐺: 𝐽 𝐾)
115, 8, 9, 10syl3anc 1216 . . . . 5 (𝜑𝐺: 𝐽 𝐾)
12 nnuz 9373 . . . . . . . . . 10 ℕ = (ℤ‘1)
13 1zzd 9093 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
145, 12, 13lmbr2 12397 . . . . . . . . 9 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))))
151, 14mpbid 146 . . . . . . . 8 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣))))
1615simp1d 993 . . . . . . 7 (𝜑𝐹 ∈ ( 𝐽pm ℂ))
17 uniexg 4361 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
183, 17syl 14 . . . . . . . 8 (𝜑 𝐽 ∈ V)
19 cnex 7756 . . . . . . . 8 ℂ ∈ V
20 elpm2g 6559 . . . . . . . 8 (( 𝐽 ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2118, 19, 20sylancl 409 . . . . . . 7 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2216, 21mpbid 146 . . . . . 6 (𝜑 → (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ))
2322simpld 111 . . . . 5 (𝜑𝐹:dom 𝐹 𝐽)
24 fco 5288 . . . . 5 ((𝐺: 𝐽 𝐾𝐹:dom 𝐹 𝐽) → (𝐺𝐹):dom 𝐹 𝐾)
2511, 23, 24syl2anc 408 . . . 4 (𝜑 → (𝐺𝐹):dom 𝐹 𝐾)
2625fdmd 5279 . . . . 5 (𝜑 → dom (𝐺𝐹) = dom 𝐹)
2726feq2d 5260 . . . 4 (𝜑 → ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ↔ (𝐺𝐹):dom 𝐹 𝐾))
2825, 27mpbird 166 . . 3 (𝜑 → (𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾)
2922simprd 113 . . . 4 (𝜑 → dom 𝐹 ⊆ ℂ)
3026, 29eqsstrd 3133 . . 3 (𝜑 → dom (𝐺𝐹) ⊆ ℂ)
31 uniexg 4361 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
326, 31syl 14 . . . 4 (𝜑 𝐾 ∈ V)
33 elpm2g 6559 . . . 4 (( 𝐾 ∈ V ∧ ℂ ∈ V) → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3432, 19, 33sylancl 409 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3528, 30, 34mpbir2and 928 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝐾pm ℂ))
3615simp2d 994 . . 3 (𝜑𝑃 𝐽)
3711, 36ffvelrnd 5556 . 2 (𝜑 → (𝐺𝑃) ∈ 𝐾)
3815simp3d 995 . . . . . 6 (𝜑 → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
3938adantr 274 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
405adantr 274 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘ 𝐽))
418adantr 274 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐾 ∈ (TopOn‘ 𝐾))
4236adantr 274 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑃 𝐽)
439adantr 274 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
44 simprl 520 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑢𝐾)
45 simprr 521 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (𝐺𝑃) ∈ 𝑢)
46 icnpimaex 12394 . . . . . 6 (((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 𝐽) ∧ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
4740, 41, 42, 43, 44, 45, 46syl33anc 1231 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
48 r19.29 2569 . . . . . . 7 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
49 pm3.45 586 . . . . . . . . 9 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) → ((𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢)))
5049imp 123 . . . . . . . 8 (((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5150reximi 2529 . . . . . . 7 (∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5248, 51syl 14 . . . . . 6 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5311ad3antrrr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺: 𝐽 𝐾)
5453ffnd 5273 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn 𝐽)
55 simplrl 524 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣𝐽)
56 elssuni 3764 . . . . . . . . . . . . . . . . . 18 (𝑣𝐽𝑣 𝐽)
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 𝐽)
58 fnfvima 5652 . . . . . . . . . . . . . . . . . 18 ((𝐺 Fn 𝐽𝑣 𝐽 ∧ (𝐹𝑘) ∈ 𝑣) → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣))
59583expia 1183 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐽𝑣 𝐽) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6054, 57, 59syl2anc 408 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6123ad2antrr 479 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹 𝐽)
62 fvco3 5492 . . . . . . . . . . . . . . . . . 18 ((𝐹:dom 𝐹 𝐽𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6361, 62sylan 281 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6463eleq1d 2208 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) ↔ (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6560, 64sylibrd 168 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣)))
66 simplrr 525 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑣) ⊆ 𝑢)
6766sseld 3096 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
6865, 67syld 45 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
69 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹)
7026ad3antrrr 483 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺𝐹) = dom 𝐹)
7169, 70eleqtrrd 2219 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺𝐹))
7268, 71jctild 314 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7372expimpd 360 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7473ralimdv 2500 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7574reximdv 2533 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7675expr 372 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐺𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7776com23 78 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ((𝐺𝑣) ⊆ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7877impd 252 . . . . . . 7 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7978rexlimdva 2549 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8052, 79syl5 32 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8139, 47, 80mp2and 429 . . . 4 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))
8281expr 372 . . 3 ((𝜑𝑢𝐾) → ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8382ralrimiva 2505 . 2 (𝜑 → ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
848, 12, 13lmbr2 12397 . 2 (𝜑 → ((𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃) ↔ ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ∧ (𝐺𝑃) ∈ 𝐾 ∧ ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))))
8535, 37, 83, 84mpbir3and 1164 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417  Vcvv 2686   ⊆ wss 3071  ∪ cuni 3736   class class class wbr 3929  dom cdm 4539   “ cima 4542   ∘ ccom 4543   Fn wfn 5118  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774   ↑pm cpm 6543  ℂcc 7630  1c1 7633  ℕcn 8732  ℤ≥cuz 9338  Topctop 12178  TopOnctopon 12191   CnP ccnp 12369  ⇝𝑡clm 12370 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pm 6545  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-top 12179  df-topon 12192  df-cnp 12372  df-lm 12373 This theorem is referenced by:  lmcn  12434
 Copyright terms: Public domain W3C validator