ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmtopcnp GIF version

Theorem lmtopcnp 12200
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcnp.k (𝜑𝐾 ∈ Top)
lmcnp.4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
Assertion
Ref Expression
lmtopcnp (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmtopcnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.3 . . . . . . . 8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmrcl 12142 . . . . . . . 8 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
31, 2syl 14 . . . . . . 7 (𝜑𝐽 ∈ Top)
4 toptopon2 11968 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 121 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 lmcnp.k . . . . . . 7 (𝜑𝐾 ∈ Top)
7 toptopon2 11968 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
86, 7sylib 121 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
9 lmcnp.4 . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10 cnpf2 12157 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐺: 𝐽 𝐾)
115, 8, 9, 10syl3anc 1184 . . . . 5 (𝜑𝐺: 𝐽 𝐾)
12 nnuz 9211 . . . . . . . . . 10 ℕ = (ℤ‘1)
13 1zzd 8933 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
145, 12, 13lmbr2 12164 . . . . . . . . 9 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))))
151, 14mpbid 146 . . . . . . . 8 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣))))
1615simp1d 961 . . . . . . 7 (𝜑𝐹 ∈ ( 𝐽pm ℂ))
17 uniexg 4299 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
183, 17syl 14 . . . . . . . 8 (𝜑 𝐽 ∈ V)
19 cnex 7616 . . . . . . . 8 ℂ ∈ V
20 elpm2g 6489 . . . . . . . 8 (( 𝐽 ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2118, 19, 20sylancl 407 . . . . . . 7 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2216, 21mpbid 146 . . . . . 6 (𝜑 → (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ))
2322simpld 111 . . . . 5 (𝜑𝐹:dom 𝐹 𝐽)
24 fco 5224 . . . . 5 ((𝐺: 𝐽 𝐾𝐹:dom 𝐹 𝐽) → (𝐺𝐹):dom 𝐹 𝐾)
2511, 23, 24syl2anc 406 . . . 4 (𝜑 → (𝐺𝐹):dom 𝐹 𝐾)
2625fdmd 5215 . . . . 5 (𝜑 → dom (𝐺𝐹) = dom 𝐹)
2726feq2d 5196 . . . 4 (𝜑 → ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ↔ (𝐺𝐹):dom 𝐹 𝐾))
2825, 27mpbird 166 . . 3 (𝜑 → (𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾)
2922simprd 113 . . . 4 (𝜑 → dom 𝐹 ⊆ ℂ)
3026, 29eqsstrd 3083 . . 3 (𝜑 → dom (𝐺𝐹) ⊆ ℂ)
31 uniexg 4299 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
326, 31syl 14 . . . 4 (𝜑 𝐾 ∈ V)
33 elpm2g 6489 . . . 4 (( 𝐾 ∈ V ∧ ℂ ∈ V) → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3432, 19, 33sylancl 407 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3528, 30, 34mpbir2and 896 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝐾pm ℂ))
3615simp2d 962 . . 3 (𝜑𝑃 𝐽)
3711, 36ffvelrnd 5488 . 2 (𝜑 → (𝐺𝑃) ∈ 𝐾)
3815simp3d 963 . . . . . 6 (𝜑 → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
3938adantr 272 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
405adantr 272 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘ 𝐽))
418adantr 272 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐾 ∈ (TopOn‘ 𝐾))
4236adantr 272 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑃 𝐽)
439adantr 272 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
44 simprl 501 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑢𝐾)
45 simprr 502 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (𝐺𝑃) ∈ 𝑢)
46 icnpimaex 12161 . . . . . 6 (((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 𝐽) ∧ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
4740, 41, 42, 43, 44, 45, 46syl33anc 1199 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
48 r19.29 2528 . . . . . . 7 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
49 pm3.45 567 . . . . . . . . 9 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) → ((𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢)))
5049imp 123 . . . . . . . 8 (((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5150reximi 2488 . . . . . . 7 (∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5248, 51syl 14 . . . . . 6 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5311ad3antrrr 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺: 𝐽 𝐾)
5453ffnd 5209 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn 𝐽)
55 simplrl 505 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣𝐽)
56 elssuni 3711 . . . . . . . . . . . . . . . . . 18 (𝑣𝐽𝑣 𝐽)
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 𝐽)
58 fnfvima 5584 . . . . . . . . . . . . . . . . . 18 ((𝐺 Fn 𝐽𝑣 𝐽 ∧ (𝐹𝑘) ∈ 𝑣) → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣))
59583expia 1151 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐽𝑣 𝐽) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6054, 57, 59syl2anc 406 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6123ad2antrr 475 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹 𝐽)
62 fvco3 5424 . . . . . . . . . . . . . . . . . 18 ((𝐹:dom 𝐹 𝐽𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6361, 62sylan 279 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6463eleq1d 2168 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) ↔ (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6560, 64sylibrd 168 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣)))
66 simplrr 506 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑣) ⊆ 𝑢)
6766sseld 3046 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
6865, 67syld 45 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
69 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹)
7026ad3antrrr 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺𝐹) = dom 𝐹)
7169, 70eleqtrrd 2179 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺𝐹))
7268, 71jctild 312 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7372expimpd 358 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7473ralimdv 2459 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7574reximdv 2492 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7675expr 370 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐺𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7776com23 78 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ((𝐺𝑣) ⊆ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7877impd 252 . . . . . . 7 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7978rexlimdva 2508 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8052, 79syl5 32 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8139, 47, 80mp2and 427 . . . 4 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))
8281expr 370 . . 3 ((𝜑𝑢𝐾) → ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8382ralrimiva 2464 . 2 (𝜑 → ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
848, 12, 13lmbr2 12164 . 2 (𝜑 → ((𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃) ↔ ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ∧ (𝐺𝑃) ∈ 𝐾 ∧ ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))))
8535, 37, 83, 84mpbir3and 1132 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  wral 2375  wrex 2376  Vcvv 2641  wss 3021   cuni 3683   class class class wbr 3875  dom cdm 4477  cima 4480  ccom 4481   Fn wfn 5054  wf 5055  cfv 5059  (class class class)co 5706  pm cpm 6473  cc 7498  1c1 7501  cn 8578  cuz 9176  Topctop 11946  TopOnctopon 11959   CnP ccnp 12137  𝑡clm 12138
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-addcom 7595  ax-addass 7597  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-0id 7603  ax-rnegex 7604  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-map 6474  df-pm 6475  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-inn 8579  df-n0 8830  df-z 8907  df-uz 9177  df-top 11947  df-topon 11960  df-cnp 12140  df-lm 12141
This theorem is referenced by:  lmcn  12201
  Copyright terms: Public domain W3C validator