ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmtopcnp GIF version

Theorem lmtopcnp 14570
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcnp.k (𝜑𝐾 ∈ Top)
lmcnp.4 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
Assertion
Ref Expression
lmtopcnp (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmtopcnp
Dummy variables 𝑗 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmcnp.3 . . . . . . . 8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmrcl 14511 . . . . . . . 8 (𝐹(⇝𝑡𝐽)𝑃𝐽 ∈ Top)
31, 2syl 14 . . . . . . 7 (𝜑𝐽 ∈ Top)
4 toptopon2 14339 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
53, 4sylib 122 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
6 lmcnp.k . . . . . . 7 (𝜑𝐾 ∈ Top)
7 toptopon2 14339 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
86, 7sylib 122 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
9 lmcnp.4 . . . . . 6 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
10 cnpf2 14527 . . . . . 6 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐺: 𝐽 𝐾)
115, 8, 9, 10syl3anc 1249 . . . . 5 (𝜑𝐺: 𝐽 𝐾)
12 nnuz 9654 . . . . . . . . . 10 ℕ = (ℤ‘1)
13 1zzd 9370 . . . . . . . . . 10 (𝜑 → 1 ∈ ℤ)
145, 12, 13lmbr2 14534 . . . . . . . . 9 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))))
151, 14mpbid 147 . . . . . . . 8 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ∧ 𝑃 𝐽 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣))))
1615simp1d 1011 . . . . . . 7 (𝜑𝐹 ∈ ( 𝐽pm ℂ))
17 uniexg 4475 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
183, 17syl 14 . . . . . . . 8 (𝜑 𝐽 ∈ V)
19 cnex 8020 . . . . . . . 8 ℂ ∈ V
20 elpm2g 6733 . . . . . . . 8 (( 𝐽 ∈ V ∧ ℂ ∈ V) → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2118, 19, 20sylancl 413 . . . . . . 7 (𝜑 → (𝐹 ∈ ( 𝐽pm ℂ) ↔ (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ)))
2216, 21mpbid 147 . . . . . 6 (𝜑 → (𝐹:dom 𝐹 𝐽 ∧ dom 𝐹 ⊆ ℂ))
2322simpld 112 . . . . 5 (𝜑𝐹:dom 𝐹 𝐽)
24 fco 5426 . . . . 5 ((𝐺: 𝐽 𝐾𝐹:dom 𝐹 𝐽) → (𝐺𝐹):dom 𝐹 𝐾)
2511, 23, 24syl2anc 411 . . . 4 (𝜑 → (𝐺𝐹):dom 𝐹 𝐾)
2625fdmd 5417 . . . . 5 (𝜑 → dom (𝐺𝐹) = dom 𝐹)
2726feq2d 5398 . . . 4 (𝜑 → ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ↔ (𝐺𝐹):dom 𝐹 𝐾))
2825, 27mpbird 167 . . 3 (𝜑 → (𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾)
2922simprd 114 . . . 4 (𝜑 → dom 𝐹 ⊆ ℂ)
3026, 29eqsstrd 3220 . . 3 (𝜑 → dom (𝐺𝐹) ⊆ ℂ)
31 uniexg 4475 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ V)
326, 31syl 14 . . . 4 (𝜑 𝐾 ∈ V)
33 elpm2g 6733 . . . 4 (( 𝐾 ∈ V ∧ ℂ ∈ V) → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3432, 19, 33sylancl 413 . . 3 (𝜑 → ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ↔ ((𝐺𝐹):dom (𝐺𝐹)⟶ 𝐾 ∧ dom (𝐺𝐹) ⊆ ℂ)))
3528, 30, 34mpbir2and 946 . 2 (𝜑 → (𝐺𝐹) ∈ ( 𝐾pm ℂ))
3615simp2d 1012 . . 3 (𝜑𝑃 𝐽)
3711, 36ffvelcdmd 5701 . 2 (𝜑 → (𝐺𝑃) ∈ 𝐾)
3815simp3d 1013 . . . . . 6 (𝜑 → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
3938adantr 276 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)))
405adantr 276 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘ 𝐽))
418adantr 276 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐾 ∈ (TopOn‘ 𝐾))
4236adantr 276 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑃 𝐽)
439adantr 276 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
44 simprl 529 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → 𝑢𝐾)
45 simprr 531 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (𝐺𝑃) ∈ 𝑢)
46 icnpimaex 14531 . . . . . 6 (((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝑃 𝐽) ∧ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
4740, 41, 42, 43, 44, 45, 46syl33anc 1264 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢))
48 r19.29 2634 . . . . . . 7 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)))
49 pm3.45 597 . . . . . . . . 9 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) → ((𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢)))
5049imp 124 . . . . . . . 8 (((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5150reximi 2594 . . . . . . 7 (∃𝑣𝐽 ((𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5248, 51syl 14 . . . . . 6 ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢))
5311ad3antrrr 492 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺: 𝐽 𝐾)
5453ffnd 5411 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn 𝐽)
55 simplrl 535 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣𝐽)
56 elssuni 3868 . . . . . . . . . . . . . . . . . 18 (𝑣𝐽𝑣 𝐽)
5755, 56syl 14 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 𝐽)
58 fnfvima 5800 . . . . . . . . . . . . . . . . . 18 ((𝐺 Fn 𝐽𝑣 𝐽 ∧ (𝐹𝑘) ∈ 𝑣) → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣))
59583expia 1207 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn 𝐽𝑣 𝐽) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6054, 57, 59syl2anc 411 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6123ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹 𝐽)
62 fvco3 5635 . . . . . . . . . . . . . . . . . 18 ((𝐹:dom 𝐹 𝐽𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6361, 62sylan 283 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
6463eleq1d 2265 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) ↔ (𝐺‘(𝐹𝑘)) ∈ (𝐺𝑣)))
6560, 64sylibrd 169 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣)))
66 simplrr 536 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺𝑣) ⊆ 𝑢)
6766sseld 3183 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺𝐹)‘𝑘) ∈ (𝐺𝑣) → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
6865, 67syld 45 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → ((𝐺𝐹)‘𝑘) ∈ 𝑢))
69 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹)
7026ad3antrrr 492 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺𝐹) = dom 𝐹)
7169, 70eleqtrrd 2276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺𝐹))
7268, 71jctild 316 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7372expimpd 363 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7473ralimdv 2565 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7574reximdv 2598 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ (𝑣𝐽 ∧ (𝐺𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7675expr 375 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((𝐺𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7776com23 78 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) → ((𝐺𝑣) ⊆ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))))
7877impd 254 . . . . . . 7 (((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) ∧ 𝑣𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
7978rexlimdva 2614 . . . . . 6 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → (∃𝑣𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣) ∧ (𝐺𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8052, 79syl5 32 . . . . 5 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ((∀𝑣𝐽 (𝑃𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐽 (𝑃𝑣 ∧ (𝐺𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8139, 47, 80mp2and 433 . . . 4 ((𝜑 ∧ (𝑢𝐾 ∧ (𝐺𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢))
8281expr 375 . . 3 ((𝜑𝑢𝐾) → ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
8382ralrimiva 2570 . 2 (𝜑 → ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))
848, 12, 13lmbr2 14534 . 2 (𝜑 → ((𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃) ↔ ((𝐺𝐹) ∈ ( 𝐾pm ℂ) ∧ (𝐺𝑃) ∈ 𝐾 ∧ ∀𝑢𝐾 ((𝐺𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom (𝐺𝐹) ∧ ((𝐺𝐹)‘𝑘) ∈ 𝑢)))))
8535, 37, 83, 84mpbir3and 1182 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  wss 3157   cuni 3840   class class class wbr 4034  dom cdm 4664  cima 4667  ccom 4668   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  pm cpm 6717  cc 7894  1c1 7897  cn 9007  cuz 9618  Topctop 14317  TopOnctopon 14330   CnP ccnp 14506  𝑡clm 14507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pm 6719  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-top 14318  df-topon 14331  df-cnp 14509  df-lm 14510
This theorem is referenced by:  lmcn  14571
  Copyright terms: Public domain W3C validator