Step | Hyp | Ref
| Expression |
1 | | lmcnp.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
2 | | lmrcl 12985 |
. . . . . . . 8
⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
3 | 1, 2 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
4 | | toptopon2 12811 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
5 | 3, 4 | sylib 121 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
6 | | lmcnp.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Top) |
7 | | toptopon2 12811 |
. . . . . . 7
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
8 | 6, 7 | sylib 121 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
9 | | lmcnp.4 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
10 | | cnpf2 13001 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘∪ 𝐾) ∧ 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
11 | 5, 8, 9, 10 | syl3anc 1233 |
. . . . 5
⊢ (𝜑 → 𝐺:∪ 𝐽⟶∪ 𝐾) |
12 | | nnuz 9522 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
13 | | 1zzd 9239 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
14 | 5, 12, 13 | lmbr2 13008 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (∪ 𝐽 ↑pm
ℂ) ∧ 𝑃 ∈
∪ 𝐽 ∧ ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))))) |
15 | 1, 14 | mpbid 146 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm
ℂ) ∧ 𝑃 ∈
∪ 𝐽 ∧ ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)))) |
16 | 15 | simp1d 1004 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (∪ 𝐽 ↑pm
ℂ)) |
17 | | uniexg 4424 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top → ∪ 𝐽
∈ V) |
18 | 3, 17 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐽
∈ V) |
19 | | cnex 7898 |
. . . . . . . 8
⊢ ℂ
∈ V |
20 | | elpm2g 6643 |
. . . . . . . 8
⊢ ((∪ 𝐽
∈ V ∧ ℂ ∈ V) → (𝐹 ∈ (∪ 𝐽 ↑pm
ℂ) ↔ (𝐹:dom
𝐹⟶∪ 𝐽
∧ dom 𝐹 ⊆
ℂ))) |
21 | 18, 19, 20 | sylancl 411 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∈ (∪ 𝐽 ↑pm
ℂ) ↔ (𝐹:dom
𝐹⟶∪ 𝐽
∧ dom 𝐹 ⊆
ℂ))) |
22 | 16, 21 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → (𝐹:dom 𝐹⟶∪ 𝐽 ∧ dom 𝐹 ⊆ ℂ)) |
23 | 22 | simpld 111 |
. . . . 5
⊢ (𝜑 → 𝐹:dom 𝐹⟶∪ 𝐽) |
24 | | fco 5363 |
. . . . 5
⊢ ((𝐺:∪
𝐽⟶∪ 𝐾
∧ 𝐹:dom 𝐹⟶∪ 𝐽)
→ (𝐺 ∘ 𝐹):dom 𝐹⟶∪ 𝐾) |
25 | 11, 23, 24 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ 𝐹):dom 𝐹⟶∪ 𝐾) |
26 | 25 | fdmd 5354 |
. . . . 5
⊢ (𝜑 → dom (𝐺 ∘ 𝐹) = dom 𝐹) |
27 | 26 | feq2d 5335 |
. . . 4
⊢ (𝜑 → ((𝐺 ∘ 𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾 ↔ (𝐺 ∘ 𝐹):dom 𝐹⟶∪ 𝐾)) |
28 | 25, 27 | mpbird 166 |
. . 3
⊢ (𝜑 → (𝐺 ∘ 𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾) |
29 | 22 | simprd 113 |
. . . 4
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
30 | 26, 29 | eqsstrd 3183 |
. . 3
⊢ (𝜑 → dom (𝐺 ∘ 𝐹) ⊆ ℂ) |
31 | | uniexg 4424 |
. . . . 5
⊢ (𝐾 ∈ Top → ∪ 𝐾
∈ V) |
32 | 6, 31 | syl 14 |
. . . 4
⊢ (𝜑 → ∪ 𝐾
∈ V) |
33 | | elpm2g 6643 |
. . . 4
⊢ ((∪ 𝐾
∈ V ∧ ℂ ∈ V) → ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm
ℂ) ↔ ((𝐺 ∘
𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾 ∧ dom (𝐺 ∘ 𝐹) ⊆ ℂ))) |
34 | 32, 19, 33 | sylancl 411 |
. . 3
⊢ (𝜑 → ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm
ℂ) ↔ ((𝐺 ∘
𝐹):dom (𝐺 ∘ 𝐹)⟶∪ 𝐾 ∧ dom (𝐺 ∘ 𝐹) ⊆ ℂ))) |
35 | 28, 30, 34 | mpbir2and 939 |
. 2
⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm
ℂ)) |
36 | 15 | simp2d 1005 |
. . 3
⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
37 | 11, 36 | ffvelrnd 5632 |
. 2
⊢ (𝜑 → (𝐺‘𝑃) ∈ ∪ 𝐾) |
38 | 15 | simp3d 1006 |
. . . . . 6
⊢ (𝜑 → ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))) |
39 | 38 | adantr 274 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣))) |
40 | 5 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
41 | 8 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
42 | 36 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → 𝑃 ∈ ∪ 𝐽) |
43 | 9 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
44 | | simprl 526 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → 𝑢 ∈ 𝐾) |
45 | | simprr 527 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → (𝐺‘𝑃) ∈ 𝑢) |
46 | | icnpimaex 13005 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘∪ 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) ∧ (𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
47 | 40, 41, 42, 43, 44, 45, 46 | syl33anc 1248 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
48 | | r19.29 2607 |
. . . . . . 7
⊢
((∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢))) |
49 | | pm3.45 592 |
. . . . . . . . 9
⊢ ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) → ((𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢))) |
50 | 49 | imp 123 |
. . . . . . . 8
⊢ (((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
51 | 50 | reximi 2567 |
. . . . . . 7
⊢
(∃𝑣 ∈
𝐽 ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
52 | 48, 51 | syl 14 |
. . . . . 6
⊢
((∀𝑣 ∈
𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) |
53 | 11 | ad3antrrr 489 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺:∪ 𝐽⟶∪ 𝐾) |
54 | 53 | ffnd 5348 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝐺 Fn ∪ 𝐽) |
55 | | simplrl 530 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 ∈ 𝐽) |
56 | | elssuni 3824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ 𝐽 → 𝑣 ⊆ ∪ 𝐽) |
57 | 55, 56 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑣 ⊆ ∪ 𝐽) |
58 | | fnfvima 5730 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Fn ∪
𝐽 ∧ 𝑣 ⊆ ∪ 𝐽 ∧ (𝐹‘𝑘) ∈ 𝑣) → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣)) |
59 | 58 | 3expia 1200 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 Fn ∪
𝐽 ∧ 𝑣 ⊆ ∪ 𝐽) → ((𝐹‘𝑘) ∈ 𝑣 → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
60 | 54, 57, 59 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
61 | 23 | ad2antrr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → 𝐹:dom 𝐹⟶∪ 𝐽) |
62 | | fvco3 5567 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹:dom 𝐹⟶∪ 𝐽 ∧ 𝑘 ∈ dom 𝐹) → ((𝐺 ∘ 𝐹)‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
63 | 61, 62 | sylan 281 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐺 ∘ 𝐹)‘𝑘) = (𝐺‘(𝐹‘𝑘))) |
64 | 63 | eleq1d 2239 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣) ↔ (𝐺‘(𝐹‘𝑘)) ∈ (𝐺 “ 𝑣))) |
65 | 60, 64 | sylibrd 168 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → ((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣))) |
66 | | simplrr 531 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (𝐺 “ 𝑣) ⊆ 𝑢) |
67 | 66 | sseld 3146 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → (((𝐺 ∘ 𝐹)‘𝑘) ∈ (𝐺 “ 𝑣) → ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
68 | 65, 67 | syld 45 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
69 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom 𝐹) |
70 | 26 | ad3antrrr 489 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → dom (𝐺 ∘ 𝐹) = dom 𝐹) |
71 | 69, 70 | eleqtrrd 2250 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → 𝑘 ∈ dom (𝐺 ∘ 𝐹)) |
72 | 68, 71 | jctild 314 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) ∧ 𝑘 ∈ dom 𝐹) → ((𝐹‘𝑘) ∈ 𝑣 → (𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
73 | 72 | expimpd 361 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → (𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
74 | 73 | ralimdv 2538 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
75 | 74 | reximdv 2571 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ (𝑣 ∈ 𝐽 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
76 | 75 | expr 373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ 𝑣 ∈ 𝐽) → ((𝐺 “ 𝑣) ⊆ 𝑢 → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)))) |
77 | 76 | com23 78 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ 𝑣 ∈ 𝐽) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) → ((𝐺 “ 𝑣) ⊆ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)))) |
78 | 77 | impd 252 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) ∧ 𝑣 ∈ 𝐽) → ((∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
79 | 78 | rexlimdva 2587 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → (∃𝑣 ∈ 𝐽 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣) ∧ (𝐺 “ 𝑣) ⊆ 𝑢) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
80 | 52, 79 | syl5 32 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ((∀𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐽 (𝑃 ∈ 𝑣 ∧ (𝐺 “ 𝑣) ⊆ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
81 | 39, 47, 80 | mp2and 431 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ (𝐺‘𝑃) ∈ 𝑢)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢)) |
82 | 81 | expr 373 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾) → ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
83 | 82 | ralrimiva 2543 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝐾 ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))) |
84 | 8, 12, 13 | lmbr2 13008 |
. 2
⊢ (𝜑 → ((𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃) ↔ ((𝐺 ∘ 𝐹) ∈ (∪ 𝐾 ↑pm
ℂ) ∧ (𝐺‘𝑃) ∈ ∪ 𝐾 ∧ ∀𝑢 ∈ 𝐾 ((𝐺‘𝑃) ∈ 𝑢 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom (𝐺 ∘ 𝐹) ∧ ((𝐺 ∘ 𝐹)‘𝑘) ∈ 𝑢))))) |
85 | 35, 37, 83, 84 | mpbir3and 1175 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |