| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.14dc | GIF version | ||
| Description: Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.) |
| Ref | Expression |
|---|---|
| pm4.14dc | ⊢ (DECID 𝜒 → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34bdc 872 | . . 3 ⊢ (DECID 𝜒 → ((𝜓 → 𝜒) ↔ (¬ 𝜒 → ¬ 𝜓))) | |
| 2 | 1 | imbi2d 230 | . 2 ⊢ (DECID 𝜒 → ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓)))) |
| 3 | impexp 263 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
| 4 | impexp 263 | . 2 ⊢ (((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (DECID 𝜒 → (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |