Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.14dc GIF version

Theorem pm4.14dc 876
 Description: Theorem *4.14 of [WhiteheadRussell] p. 117, given a decidability condition. (Contributed by Jim Kingdon, 24-Apr-2018.)
Assertion
Ref Expression
pm4.14dc (DECID 𝜒 → (((𝜑𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)))

Proof of Theorem pm4.14dc
StepHypRef Expression
1 con34bdc 857 . . 3 (DECID 𝜒 → ((𝜓𝜒) ↔ (¬ 𝜒 → ¬ 𝜓)))
21imbi2d 229 . 2 (DECID 𝜒 → ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓))))
3 impexp 261 . 2 (((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))
4 impexp 261 . 2 (((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) ↔ (𝜑 → (¬ 𝜒 → ¬ 𝜓)))
52, 3, 43bitr4g 222 1 (DECID 𝜒 → (((𝜑𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104  DECID wdc 820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator