Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.54dc | GIF version |
Description: Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 712, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.) |
Ref | Expression |
---|---|
pm2.54dc | ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcn 832 | . 2 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
2 | notnotrdc 833 | . . . . 5 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | |
3 | orc 702 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
4 | 2, 3 | syl6 33 | . . . 4 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → (𝜑 ∨ 𝜓))) |
5 | 4 | a1d 22 | . . 3 ⊢ (DECID 𝜑 → (DECID ¬ 𝜑 → (¬ ¬ 𝜑 → (𝜑 ∨ 𝜓)))) |
6 | olc 701 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
7 | 6 | a1i 9 | . . 3 ⊢ (DECID 𝜑 → (𝜓 → (𝜑 ∨ 𝜓))) |
8 | 5, 7 | jaddc 854 | . 2 ⊢ (DECID 𝜑 → (DECID ¬ 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓)))) |
9 | 1, 8 | mpd 13 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 |
This theorem is referenced by: dfordc 882 pm2.68dc 884 pm4.79dc 893 pm5.11dc 899 |
Copyright terms: Public domain | W3C validator |