| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.54dc | GIF version | ||
| Description: Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 723, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.) |
| Ref | Expression |
|---|---|
| pm2.54dc | ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dcn 843 | . 2 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
| 2 | notnotrdc 844 | . . . . 5 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → 𝜑)) | |
| 3 | orc 713 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 4 | 2, 3 | syl6 33 | . . . 4 ⊢ (DECID 𝜑 → (¬ ¬ 𝜑 → (𝜑 ∨ 𝜓))) |
| 5 | 4 | a1d 22 | . . 3 ⊢ (DECID 𝜑 → (DECID ¬ 𝜑 → (¬ ¬ 𝜑 → (𝜑 ∨ 𝜓)))) |
| 6 | olc 712 | . . . 4 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 7 | 6 | a1i 9 | . . 3 ⊢ (DECID 𝜑 → (𝜓 → (𝜑 ∨ 𝜓))) |
| 8 | 5, 7 | jaddc 865 | . 2 ⊢ (DECID 𝜑 → (DECID ¬ 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓)))) |
| 9 | 1, 8 | mpd 13 | 1 ⊢ (DECID 𝜑 → ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: dfordc 893 pm2.68dc 895 pm4.79dc 904 pm5.11dc 910 |
| Copyright terms: Public domain | W3C validator |