ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.54dc GIF version

Theorem pm2.54dc 877
Description: Deriving disjunction from implication for a decidable proposition. Based on theorem *2.54 of [WhiteheadRussell] p. 107. The converse, pm2.53 712, holds whether the proposition is decidable or not. (Contributed by Jim Kingdon, 26-Mar-2018.)
Assertion
Ref Expression
pm2.54dc (DECID 𝜑 → ((¬ 𝜑𝜓) → (𝜑𝜓)))

Proof of Theorem pm2.54dc
StepHypRef Expression
1 dcn 828 . 2 (DECID 𝜑DECID ¬ 𝜑)
2 notnotrdc 829 . . . . 5 (DECID 𝜑 → (¬ ¬ 𝜑𝜑))
3 orc 702 . . . . 5 (𝜑 → (𝜑𝜓))
42, 3syl6 33 . . . 4 (DECID 𝜑 → (¬ ¬ 𝜑 → (𝜑𝜓)))
54a1d 22 . . 3 (DECID 𝜑 → (DECID ¬ 𝜑 → (¬ ¬ 𝜑 → (𝜑𝜓))))
6 olc 701 . . . 4 (𝜓 → (𝜑𝜓))
76a1i 9 . . 3 (DECID 𝜑 → (𝜓 → (𝜑𝜓)))
85, 7jaddc 850 . 2 (DECID 𝜑 → (DECID ¬ 𝜑 → ((¬ 𝜑𝜓) → (𝜑𝜓))))
91, 8mpd 13 1 (DECID 𝜑 → ((¬ 𝜑𝜓) → (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-dc 821
This theorem is referenced by:  dfordc  878  pm2.68dc  880  pm4.79dc  889  pm5.11dc  895
  Copyright terms: Public domain W3C validator