ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ianordc GIF version

Theorem ianordc 901
Description: Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 755, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
ianordc (DECID 𝜑 → (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))

Proof of Theorem ianordc
StepHypRef Expression
1 imnan 692 . 2 ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑𝜓))
2 pm4.62dc 900 . 2 (DECID 𝜑 → ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))
31, 2bitr3id 194 1 (DECID 𝜑 → (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  anordc  959  19.33bdc  1654  nn0n0n1ge2b  9472  nelfzo  10294  gcdsupex  12353  gcdsupcl  12354  dfgcd2  12410
  Copyright terms: Public domain W3C validator