| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ianordc | GIF version | ||
| Description: Negated conjunction in terms of disjunction (DeMorgan's law). Theorem *4.51 of [WhiteheadRussell] p. 120, but where one proposition is decidable. The reverse direction, pm3.14 754, holds for all propositions, but the equivalence only holds where one proposition is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.) |
| Ref | Expression |
|---|---|
| ianordc | ⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 691 | . 2 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | pm4.62dc 899 | . 2 ⊢ (DECID 𝜑 → ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | |
| 3 | 1, 2 | bitr3id 194 | 1 ⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 |
| This theorem is referenced by: anordc 958 19.33bdc 1644 nn0n0n1ge2b 9405 nelfzo 10227 gcdsupex 12124 gcdsupcl 12125 dfgcd2 12181 |
| Copyright terms: Public domain | W3C validator |