ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.40 GIF version

Theorem r19.40 2659
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 109 . . 3 ((𝜑𝜓) → 𝜑)
21reximi 2602 . 2 (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜑)
3 simpr 110 . . 3 ((𝜑𝜓) → 𝜓)
43reximi 2602 . 2 (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜓)
52, 4jca 306 1 (∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-ial 1556
This theorem depends on definitions:  df-bi 117  df-ral 2488  df-rex 2489
This theorem is referenced by:  rexanuz  11270  metequiv2  14939
  Copyright terms: Public domain W3C validator