ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.40 Unicode version

Theorem r19.40 2620
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 108 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21reximi 2563 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ph )
3 simpr 109 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
43reximi 2563 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ps )
52, 4jca 304 1  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-ral 2449  df-rex 2450
This theorem is referenced by:  rexanuz  10930  metequiv2  13136
  Copyright terms: Public domain W3C validator