ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.40 Unicode version

Theorem r19.40 2651
Description: Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
Assertion
Ref Expression
r19.40  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )

Proof of Theorem r19.40
StepHypRef Expression
1 simpl 109 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
21reximi 2594 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ph )
3 simpr 110 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
43reximi 2594 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  E. x  e.  A  ps )
52, 4jca 306 1  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E. x  e.  A  ph  /\  E. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-ral 2480  df-rex 2481
This theorem is referenced by:  rexanuz  11153  metequiv2  14732
  Copyright terms: Public domain W3C validator