ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metequiv2 GIF version

Theorem metequiv2 12424
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metequiv2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 510 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠))
2 simplll 503 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 500 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑥𝑋)
4 simprlr 508 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ+)
54rpxrd 9331 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ*)
6 simprll 507 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ+)
76rpxrd 9331 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ*)
8 simprrl 509 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠𝑟)
9 ssbl 12354 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
102, 3, 5, 7, 8, 9syl221anc 1195 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
111, 10eqsstr3d 3084 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
12 simpllr 504 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐷 ∈ (∞Met‘𝑋))
13 ssbl 12354 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1412, 3, 5, 7, 8, 13syl221anc 1195 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
151, 14eqsstrd 3083 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1611, 15jca 302 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
1716expr 370 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1817anassrs 395 . . . . . . 7 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑠 ∈ ℝ+) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1918reximdva 2493 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
20 r19.40 2543 . . . . . 6 (∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2119, 20syl6 33 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2221ralimdva 2458 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
23 r19.26 2517 . . . 4 (∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) ↔ (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2422, 23syl6ib 160 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2524ralimdva 2458 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
26 metequiv.3 . . 3 𝐽 = (MetOpen‘𝐶)
27 metequiv.4 . . 3 𝐾 = (MetOpen‘𝐷)
2826, 27metequiv 12423 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2925, 28sylibrd 168 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wral 2375  wrex 2376  wss 3021   class class class wbr 3875  cfv 5059  (class class class)co 5706  *cxr 7671  cle 7673  +crp 9291  ∞Metcxmet 11931  ballcbl 11933  MetOpencmopn 11936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-map 6474  df-sup 6786  df-inf 6787  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-xneg 9400  df-xadd 9401  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-topgen 11923  df-psmet 11938  df-xmet 11939  df-bl 11941  df-mopn 11942  df-top 11947  df-bases 11992
This theorem is referenced by:  bdmopn  12432
  Copyright terms: Public domain W3C validator