ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metequiv2 GIF version

Theorem metequiv2 15135
Description: If there is a sequence of radii approaching zero for which the balls of both metrics coincide, then the generated topologies are equivalent. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
metequiv.3 𝐽 = (MetOpen‘𝐶)
metequiv.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metequiv2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Distinct variable groups:   𝑠,𝑟,𝑥,𝐶   𝐽,𝑟,𝑠,𝑥   𝐾,𝑟,𝑠,𝑥   𝐷,𝑟,𝑠,𝑥   𝑋,𝑟,𝑠,𝑥

Proof of Theorem metequiv2
StepHypRef Expression
1 simprrr 540 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠))
2 simplll 533 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐶 ∈ (∞Met‘𝑋))
3 simplr 528 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑥𝑋)
4 simprlr 538 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ+)
54rpxrd 9861 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠 ∈ ℝ*)
6 simprll 537 . . . . . . . . . . . . 13 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ+)
76rpxrd 9861 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑟 ∈ ℝ*)
8 simprrl 539 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝑠𝑟)
9 ssbl 15065 . . . . . . . . . . . 12 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
102, 3, 5, 7, 8, 9syl221anc 1263 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
111, 10eqsstrrd 3241 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))
12 simpllr 534 . . . . . . . . . . . 12 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → 𝐷 ∈ (∞Met‘𝑋))
13 ssbl 15065 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ*𝑟 ∈ ℝ*) ∧ 𝑠𝑟) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1412, 3, 5, 7, 8, 13syl221anc 1263 . . . . . . . . . . 11 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
151, 14eqsstrd 3240 . . . . . . . . . 10 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))
1611, 15jca 306 . . . . . . . . 9 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ ((𝑟 ∈ ℝ+𝑠 ∈ ℝ+) ∧ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)))) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
1716expr 375 . . . . . . . 8 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ (𝑟 ∈ ℝ+𝑠 ∈ ℝ+)) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1817anassrs 400 . . . . . . 7 (((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) ∧ 𝑠 ∈ ℝ+) → ((𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
1918reximdva 2612 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
20 r19.40 2665 . . . . . 6 (∃𝑠 ∈ ℝ+ ((𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2119, 20syl6 33 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) ∧ 𝑟 ∈ ℝ+) → (∃𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2221ralimdva 2577 . . . 4 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
23 r19.26 2637 . . . 4 (∀𝑟 ∈ ℝ+ (∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∃𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)) ↔ (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟)))
2422, 23imbitrdi 161 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) ∧ 𝑥𝑋) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2524ralimdva 2577 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
26 metequiv.3 . . 3 𝐽 = (MetOpen‘𝐶)
27 metequiv.4 . . 3 𝐾 = (MetOpen‘𝐷)
2826, 27metequiv 15134 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥𝑋 (∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑥(ball‘𝐶)𝑠) ⊆ (𝑥(ball‘𝐷)𝑟))))
2925, 28sylibrd 169 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥𝑋𝑟 ∈ ℝ+𝑠 ∈ ℝ+ (𝑠𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wss 3177   class class class wbr 4062  cfv 5294  (class class class)co 5974  *cxr 8148  cle 8150  +crp 9817  ∞Metcxmet 14465  ballcbl 14467  MetOpencmopn 14470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-bl 14475  df-mopn 14476  df-top 14637  df-bases 14682
This theorem is referenced by:  bdmopn  15143
  Copyright terms: Public domain W3C validator