ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz GIF version

Theorem rexanuz 11507
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑘   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2657 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
21rexbii 2537 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
3 r19.40 2685 . . 3 (∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
42, 3sylbi 121 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
5 uzf 9733 . . . 4 :ℤ⟶𝒫 ℤ
6 ffn 5473 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 raleq 2728 . . . . 5 (𝑥 = (ℤ𝑗) → (∀𝑘𝑥 𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
87rexrn 5774 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
95, 6, 8mp2b 8 . . 3 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
10 raleq 2728 . . . . 5 (𝑦 = (ℤ𝑗) → (∀𝑘𝑦 𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1110rexrn 5774 . . . 4 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
125, 6, 11mp2b 8 . . 3 (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)
13 uzin2 11506 . . . . . . . . 9 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
14 inss1 3424 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
15 ssralv 3288 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑥 → (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑))
1614, 15ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑)
17 inss2 3425 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
18 ssralv 3288 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑦 → (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓)
2016, 19anim12i 338 . . . . . . . . . 10 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
21 r19.26 2657 . . . . . . . . . 10 (∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓) ↔ (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
2220, 21sylibr 134 . . . . . . . . 9 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓))
23 raleq 2728 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)))
2423rspcev 2907 . . . . . . . . 9 (((𝑥𝑦) ∈ ran ℤ ∧ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2513, 22, 24syl2an 289 . . . . . . . 8 (((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) ∧ (∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2625an4s 590 . . . . . . 7 (((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) ∧ (𝑦 ∈ ran ℤ ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2726rexlimdvaa 2649 . . . . . 6 ((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2827rexlimiva 2643 . . . . 5 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2928imp 124 . . . 4 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
30 raleq 2728 . . . . . 6 (𝑧 = (ℤ𝑗) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
3130rexrn 5774 . . . . 5 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
325, 6, 31mp2b 8 . . . 4 (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
3329, 32sylib 122 . . 3 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
349, 12, 33syl2anbr 292 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
354, 34impbii 126 1 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wral 2508  wrex 2509  cin 3196  wss 3197  𝒫 cpw 3649  ran crn 4720   Fn wfn 5313  wf 5314  cfv 5318  cz 9454  cuz 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731
This theorem is referenced by:  rexfiuz  11508  rexuz3  11509  rexanuz2  11510
  Copyright terms: Public domain W3C validator