ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexanuz GIF version

Theorem rexanuz 10784
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Distinct variable groups:   𝑗,𝑘   𝜑,𝑗   𝜓,𝑗
Allowed substitution hints:   𝜑(𝑘)   𝜓(𝑘)

Proof of Theorem rexanuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2558 . . . 4 (∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
21rexbii 2442 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ ∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓))
3 r19.40 2585 . . 3 (∃𝑗 ∈ ℤ (∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
42, 3sylbi 120 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
5 uzf 9348 . . . 4 :ℤ⟶𝒫 ℤ
6 ffn 5275 . . . 4 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
7 raleq 2626 . . . . 5 (𝑥 = (ℤ𝑗) → (∀𝑘𝑥 𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜑))
87rexrn 5560 . . . 4 (ℤ Fn ℤ → (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
95, 6, 8mp2b 8 . . 3 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
10 raleq 2626 . . . . 5 (𝑦 = (ℤ𝑗) → (∀𝑘𝑦 𝜓 ↔ ∀𝑘 ∈ (ℤ𝑗)𝜓))
1110rexrn 5560 . . . 4 (ℤ Fn ℤ → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
125, 6, 11mp2b 8 . . 3 (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓)
13 uzin2 10783 . . . . . . . . 9 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
14 inss1 3296 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑥
15 ssralv 3161 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑥 → (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑))
1614, 15ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑥 𝜑 → ∀𝑘 ∈ (𝑥𝑦)𝜑)
17 inss2 3297 . . . . . . . . . . . 12 (𝑥𝑦) ⊆ 𝑦
18 ssralv 3161 . . . . . . . . . . . 12 ((𝑥𝑦) ⊆ 𝑦 → (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓))
1917, 18ax-mp 5 . . . . . . . . . . 11 (∀𝑘𝑦 𝜓 → ∀𝑘 ∈ (𝑥𝑦)𝜓)
2016, 19anim12i 336 . . . . . . . . . 10 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
21 r19.26 2558 . . . . . . . . . 10 (∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓) ↔ (∀𝑘 ∈ (𝑥𝑦)𝜑 ∧ ∀𝑘 ∈ (𝑥𝑦)𝜓))
2220, 21sylibr 133 . . . . . . . . 9 ((∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓) → ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓))
23 raleq 2626 . . . . . . . . . 10 (𝑧 = (𝑥𝑦) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)))
2423rspcev 2789 . . . . . . . . 9 (((𝑥𝑦) ∈ ran ℤ ∧ ∀𝑘 ∈ (𝑥𝑦)(𝜑𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2513, 22, 24syl2an 287 . . . . . . . 8 (((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) ∧ (∀𝑘𝑥 𝜑 ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2625an4s 577 . . . . . . 7 (((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) ∧ (𝑦 ∈ ran ℤ ∧ ∀𝑘𝑦 𝜓)) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
2726rexlimdvaa 2550 . . . . . 6 ((𝑥 ∈ ran ℤ ∧ ∀𝑘𝑥 𝜑) → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2827rexlimiva 2544 . . . . 5 (∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 → (∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓 → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓)))
2928imp 123 . . . 4 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓))
30 raleq 2626 . . . . . 6 (𝑧 = (ℤ𝑗) → (∀𝑘𝑧 (𝜑𝜓) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
3130rexrn 5560 . . . . 5 (ℤ Fn ℤ → (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓)))
325, 6, 31mp2b 8 . . . 4 (∃𝑧 ∈ ran ℤ𝑘𝑧 (𝜑𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
3329, 32sylib 121 . . 3 ((∃𝑥 ∈ ran ℤ𝑘𝑥 𝜑 ∧ ∃𝑦 ∈ ran ℤ𝑘𝑦 𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
349, 12, 33syl2anbr 290 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓))
354, 34impbii 125 1 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝜑𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480  wral 2416  wrex 2417  cin 3070  wss 3071  𝒫 cpw 3510  ran crn 4543   Fn wfn 5121  wf 5122  cfv 5126  cz 9073  cuz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-addcom 7739  ax-addass 7741  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-0id 7747  ax-rnegex 7748  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-int 3775  df-br 3933  df-opab 3993  df-mpt 3994  df-id 4218  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-res 4554  df-ima 4555  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-inn 8740  df-n0 8997  df-z 9074  df-uz 9346
This theorem is referenced by:  rexfiuz  10785  rexuz3  10786  rexanuz2  10787
  Copyright terms: Public domain W3C validator