ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximi GIF version

Theorem reximi 2594
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
Hypothesis
Ref Expression
reximi.1 (𝜑𝜓)
Assertion
Ref Expression
reximi (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximi
StepHypRef Expression
1 reximi.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32reximia 2592 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.29d2r  2641  r19.35-1  2647  r19.40  2651  reu3  2954  ssiun  3959  iinss  3969  elunirn  5816  tfrcllemssrecs  6419  nnawordex  6596  iinerm  6675  erovlem  6695  xpf1o  6914  fidcenumlemim  7027  omniwomnimkv  7242  genprndl  7607  genprndu  7608  appdiv0nq  7650  ltexprlemm  7686  recexsrlem  7860  rereceu  7975  recexre  8624  aprcl  8692  rexanre  11404  climi2  11472  climi0  11473  climcaucn  11535  prodmodclem2  11761  prodmodc  11762  gcdsupex  12151  gcdsupcl  12152  bezoutlemeu  12201  dfgcd3  12204  isnsgrp  13110  rhmdvdsr  13809  eltg2b  14376  lmcvg  14539  cnptoprest  14561  lmtopcnp  14572  txbas  14580  metrest  14828  elply2  15057  2sqlem7  15448  bj-charfunbi  15543  bj-findis  15711
  Copyright terms: Public domain W3C validator