| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | reximia 2602 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-ral 2490 df-rex 2491 |
| This theorem is referenced by: r19.29d2r 2651 r19.35-1 2657 r19.40 2661 reu3 2964 ssiun 3971 iinss 3981 elunirn 5842 tfrcllemssrecs 6445 nnawordex 6622 iinerm 6701 erovlem 6721 xpf1o 6948 fidcenumlemim 7061 omniwomnimkv 7276 genprndl 7641 genprndu 7642 appdiv0nq 7684 ltexprlemm 7720 recexsrlem 7894 rereceu 8009 recexre 8658 aprcl 8726 rexanre 11575 climi2 11643 climi0 11644 climcaucn 11706 prodmodclem2 11932 prodmodc 11933 gcdsupex 12322 gcdsupcl 12323 bezoutlemeu 12372 dfgcd3 12375 isnsgrp 13282 rhmdvdsr 13981 eltg2b 14570 lmcvg 14733 cnptoprest 14755 lmtopcnp 14766 txbas 14774 metrest 15022 elply2 15251 2sqlem7 15642 bj-charfunbi 15821 bj-findis 15989 |
| Copyright terms: Public domain | W3C validator |