| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | reximia 2625 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: rexanaliim 2636 r19.29d2r 2675 r19.35-1 2681 r19.40 2685 reu3 2993 ssiun 4007 iinss 4017 elunirn 5896 tfrcllemssrecs 6504 nnawordex 6683 iinerm 6762 erovlem 6782 xpf1o 7013 fidcenumlemim 7127 omniwomnimkv 7342 genprndl 7716 genprndu 7717 appdiv0nq 7759 ltexprlemm 7795 recexsrlem 7969 rereceu 8084 recexre 8733 aprcl 8801 rexanre 11739 climi2 11807 climi0 11808 climcaucn 11870 prodmodclem2 12096 prodmodc 12097 gcdsupex 12486 gcdsupcl 12487 bezoutlemeu 12536 dfgcd3 12539 isnsgrp 13447 rhmdvdsr 14147 eltg2b 14736 lmcvg 14899 cnptoprest 14921 lmtopcnp 14932 txbas 14940 metrest 15188 elply2 15417 2sqlem7 15808 umgr2edg1 16015 umgr2edgneu 16018 bj-charfunbi 16198 bj-findis 16366 |
| Copyright terms: Public domain | W3C validator |