ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximi GIF version

Theorem reximi 2594
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
Hypothesis
Ref Expression
reximi.1 (𝜑𝜓)
Assertion
Ref Expression
reximi (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximi
StepHypRef Expression
1 reximi.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32reximia 2592 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-ral 2480  df-rex 2481
This theorem is referenced by:  r19.29d2r  2641  r19.35-1  2647  r19.40  2651  reu3  2954  ssiun  3959  iinss  3969  elunirn  5816  tfrcllemssrecs  6419  nnawordex  6596  iinerm  6675  erovlem  6695  xpf1o  6914  fidcenumlemim  7027  omniwomnimkv  7242  genprndl  7605  genprndu  7606  appdiv0nq  7648  ltexprlemm  7684  recexsrlem  7858  rereceu  7973  recexre  8622  aprcl  8690  rexanre  11402  climi2  11470  climi0  11471  climcaucn  11533  prodmodclem2  11759  prodmodc  11760  gcdsupex  12149  gcdsupcl  12150  bezoutlemeu  12199  dfgcd3  12202  isnsgrp  13108  rhmdvdsr  13807  eltg2b  14374  lmcvg  14537  cnptoprest  14559  lmtopcnp  14570  txbas  14578  metrest  14826  elply2  15055  2sqlem7  15446  bj-charfunbi  15541  bj-findis  15709
  Copyright terms: Public domain W3C validator