Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reximi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 2561 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∃wrex 2445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-ral 2449 df-rex 2450 |
This theorem is referenced by: r19.29d2r 2610 r19.35-1 2616 r19.40 2620 reu3 2916 ssiun 3908 iinss 3917 elunirn 5734 tfrcllemssrecs 6320 nnawordex 6496 iinerm 6573 erovlem 6593 xpf1o 6810 fidcenumlemim 6917 omniwomnimkv 7131 genprndl 7462 genprndu 7463 appdiv0nq 7505 ltexprlemm 7541 recexsrlem 7715 rereceu 7830 recexre 8476 aprcl 8544 rexanre 11162 climi2 11229 climi0 11230 climcaucn 11292 prodmodclem2 11518 prodmodc 11519 gcdsupex 11890 gcdsupcl 11891 bezoutlemeu 11940 dfgcd3 11943 eltg2b 12694 lmcvg 12857 cnptoprest 12879 lmtopcnp 12890 txbas 12898 metrest 13146 2sqlem7 13597 bj-charfunbi 13693 bj-findis 13861 |
Copyright terms: Public domain | W3C validator |