![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 2589 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-ral 2477 df-rex 2478 |
This theorem is referenced by: r19.29d2r 2638 r19.35-1 2644 r19.40 2648 reu3 2951 ssiun 3955 iinss 3965 elunirn 5810 tfrcllemssrecs 6407 nnawordex 6584 iinerm 6663 erovlem 6683 xpf1o 6902 fidcenumlemim 7013 omniwomnimkv 7228 genprndl 7583 genprndu 7584 appdiv0nq 7626 ltexprlemm 7662 recexsrlem 7836 rereceu 7951 recexre 8599 aprcl 8667 rexanre 11367 climi2 11434 climi0 11435 climcaucn 11497 prodmodclem2 11723 prodmodc 11724 gcdsupex 12097 gcdsupcl 12098 bezoutlemeu 12147 dfgcd3 12150 isnsgrp 12992 rhmdvdsr 13674 eltg2b 14233 lmcvg 14396 cnptoprest 14418 lmtopcnp 14429 txbas 14437 metrest 14685 elply2 14914 2sqlem7 15278 bj-charfunbi 15373 bj-findis 15541 |
Copyright terms: Public domain | W3C validator |