| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | reximia 2592 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29d2r 2641 r19.35-1 2647 r19.40 2651 reu3 2954 ssiun 3958 iinss 3968 elunirn 5813 tfrcllemssrecs 6410 nnawordex 6587 iinerm 6666 erovlem 6686 xpf1o 6905 fidcenumlemim 7018 omniwomnimkv 7233 genprndl 7588 genprndu 7589 appdiv0nq 7631 ltexprlemm 7667 recexsrlem 7841 rereceu 7956 recexre 8605 aprcl 8673 rexanre 11385 climi2 11453 climi0 11454 climcaucn 11516 prodmodclem2 11742 prodmodc 11743 gcdsupex 12124 gcdsupcl 12125 bezoutlemeu 12174 dfgcd3 12177 isnsgrp 13049 rhmdvdsr 13731 eltg2b 14290 lmcvg 14453 cnptoprest 14475 lmtopcnp 14486 txbas 14494 metrest 14742 elply2 14971 2sqlem7 15362 bj-charfunbi 15457 bj-findis 15625 |
| Copyright terms: Public domain | W3C validator |