| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | reximia 2605 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-ial 1560 |
| This theorem depends on definitions: df-bi 117 df-ral 2493 df-rex 2494 |
| This theorem is referenced by: rexanaliim 2616 r19.29d2r 2655 r19.35-1 2661 r19.40 2665 reu3 2973 ssiun 3986 iinss 3996 elunirn 5863 tfrcllemssrecs 6468 nnawordex 6645 iinerm 6724 erovlem 6744 xpf1o 6973 fidcenumlemim 7087 omniwomnimkv 7302 genprndl 7676 genprndu 7677 appdiv0nq 7719 ltexprlemm 7755 recexsrlem 7929 rereceu 8044 recexre 8693 aprcl 8761 rexanre 11697 climi2 11765 climi0 11766 climcaucn 11828 prodmodclem2 12054 prodmodc 12055 gcdsupex 12444 gcdsupcl 12445 bezoutlemeu 12494 dfgcd3 12497 isnsgrp 13405 rhmdvdsr 14104 eltg2b 14693 lmcvg 14856 cnptoprest 14878 lmtopcnp 14889 txbas 14897 metrest 15145 elply2 15374 2sqlem7 15765 umgr2edg1 15972 umgr2edgneu 15975 bj-charfunbi 16084 bj-findis 16252 |
| Copyright terms: Public domain | W3C validator |