ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reximi GIF version

Theorem reximi 2627
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
Hypothesis
Ref Expression
reximi.1 (𝜑𝜓)
Assertion
Ref Expression
reximi (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)

Proof of Theorem reximi
StepHypRef Expression
1 reximi.1 . . 3 (𝜑𝜓)
21a1i 9 . 2 (𝑥𝐴 → (𝜑𝜓))
32reximia 2625 1 (∃𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-ral 2513  df-rex 2514
This theorem is referenced by:  rexanaliim  2636  r19.29d2r  2675  r19.35-1  2681  r19.40  2685  reu3  2993  ssiun  4007  iinss  4017  elunirn  5896  tfrcllemssrecs  6504  nnawordex  6683  iinerm  6762  erovlem  6782  xpf1o  7013  fidcenumlemim  7127  omniwomnimkv  7342  genprndl  7716  genprndu  7717  appdiv0nq  7759  ltexprlemm  7795  recexsrlem  7969  rereceu  8084  recexre  8733  aprcl  8801  rexanre  11739  climi2  11807  climi0  11808  climcaucn  11870  prodmodclem2  12096  prodmodc  12097  gcdsupex  12486  gcdsupcl  12487  bezoutlemeu  12536  dfgcd3  12539  isnsgrp  13447  rhmdvdsr  14147  eltg2b  14736  lmcvg  14899  cnptoprest  14921  lmtopcnp  14932  txbas  14940  metrest  15188  elply2  15417  2sqlem7  15808  umgr2edg1  16015  umgr2edgneu  16018  bj-charfunbi  16198  bj-findis  16366
  Copyright terms: Public domain W3C validator