| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reximi | GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
| Ref | Expression |
|---|---|
| reximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 3 | 2 | reximia 2592 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∃wrex 2476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 df-rex 2481 |
| This theorem is referenced by: r19.29d2r 2641 r19.35-1 2647 r19.40 2651 reu3 2954 ssiun 3959 iinss 3969 elunirn 5816 tfrcllemssrecs 6419 nnawordex 6596 iinerm 6675 erovlem 6695 xpf1o 6914 fidcenumlemim 7027 omniwomnimkv 7242 genprndl 7607 genprndu 7608 appdiv0nq 7650 ltexprlemm 7686 recexsrlem 7860 rereceu 7975 recexre 8624 aprcl 8692 rexanre 11404 climi2 11472 climi0 11473 climcaucn 11535 prodmodclem2 11761 prodmodc 11762 gcdsupex 12151 gcdsupcl 12152 bezoutlemeu 12201 dfgcd3 12204 isnsgrp 13110 rhmdvdsr 13809 eltg2b 14398 lmcvg 14561 cnptoprest 14583 lmtopcnp 14594 txbas 14602 metrest 14850 elply2 15079 2sqlem7 15470 bj-charfunbi 15565 bj-findis 15733 |
| Copyright terms: Public domain | W3C validator |