![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reximi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.) |
Ref | Expression |
---|---|
reximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
reximi | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
3 | 2 | reximia 2589 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-ral 2477 df-rex 2478 |
This theorem is referenced by: r19.29d2r 2638 r19.35-1 2644 r19.40 2648 reu3 2950 ssiun 3954 iinss 3964 elunirn 5809 tfrcllemssrecs 6405 nnawordex 6582 iinerm 6661 erovlem 6681 xpf1o 6900 fidcenumlemim 7011 omniwomnimkv 7226 genprndl 7581 genprndu 7582 appdiv0nq 7624 ltexprlemm 7660 recexsrlem 7834 rereceu 7949 recexre 8597 aprcl 8665 rexanre 11364 climi2 11431 climi0 11432 climcaucn 11494 prodmodclem2 11720 prodmodc 11721 gcdsupex 12094 gcdsupcl 12095 bezoutlemeu 12144 dfgcd3 12147 isnsgrp 12989 rhmdvdsr 13671 eltg2b 14222 lmcvg 14385 cnptoprest 14407 lmtopcnp 14418 txbas 14426 metrest 14674 elply2 14881 2sqlem7 15208 bj-charfunbi 15303 bj-findis 15471 |
Copyright terms: Public domain | W3C validator |