| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralcom3 | GIF version | ||
| Description: A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.) |
| Ref | Expression |
|---|---|
| ralcom3 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.04 82 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
| 2 | 1 | ralimi2 2557 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) → ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
| 3 | pm2.04 82 | . . 3 ⊢ ((𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 3 | ralimi2 2557 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
| 5 | 2, 4 | impbii 126 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: zfregfr 4610 tgss2 14315 |
| Copyright terms: Public domain | W3C validator |