![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralcom3 | GIF version |
Description: A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.) |
Ref | Expression |
---|---|
ralcom3 | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.04 82 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑)) → (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑))) | |
2 | 1 | ralimi2 2446 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) → ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
3 | pm2.04 82 | . . 3 ⊢ ((𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 3 | ralimi2 2446 | . 2 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑) → ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
5 | 2, 4 | impbii 125 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 1445 ∀wral 2370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-gen 1390 |
This theorem depends on definitions: df-bi 116 df-ral 2375 |
This theorem is referenced by: zfregfr 4417 tgss2 11946 |
Copyright terms: Public domain | W3C validator |