ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr GIF version

Theorem zfregfr 4622
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4379 . 2 ( E Fr 𝐴 ↔ ∀𝑠 FrFor E 𝐴𝑠)
2 bi2.04 248 . . . . . . 7 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ (𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
32albii 1493 . . . . . 6 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
4 df-ral 2489 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
53, 4bitr4i 187 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠))
6 sbim 1981 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠))
7 clelsb1 2310 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
8 clelsb1 2310 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝑠𝑦𝑠)
97, 8imbi12i 239 . . . . . . . . . . 11 (([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
106, 9bitri 184 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
1110ralbii 2512 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝑥 (𝑦𝐴𝑦𝑠))
12 ralcom3 2674 . . . . . . . . 9 (∀𝑦𝑥 (𝑦𝐴𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1311, 12bitri 184 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
14 epel 4339 . . . . . . . . . 10 (𝑦 E 𝑥𝑦𝑥)
1514imbi1i 238 . . . . . . . . 9 ((𝑦 E 𝑥𝑦𝑠) ↔ (𝑦𝑥𝑦𝑠))
1615ralbii 2512 . . . . . . . 8 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1713, 16bitr4i 187 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠))
1817imbi1i 238 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
1918ralbii 2512 . . . . 5 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
205, 19bitri 184 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
21 ax-setind 4585 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → ∀𝑥(𝑥𝐴𝑥𝑠))
22 ssalel 3181 . . . . 5 (𝐴𝑠 ↔ ∀𝑥(𝑥𝐴𝑥𝑠))
2321, 22sylibr 134 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → 𝐴𝑠)
2420, 23sylbir 135 . . 3 (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠)
25 df-frfor 4378 . . 3 ( FrFor E 𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2624, 25mpbir 146 . 2 FrFor E 𝐴𝑠
271, 26mpgbir 1476 1 E Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  [wsb 1785  wcel 2176  wral 2484  wss 3166   class class class wbr 4044   E cep 4334   FrFor wfrfor 4374   Fr wfr 4375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-eprel 4336  df-frfor 4378  df-frind 4379
This theorem is referenced by:  ordfr  4623  wessep  4626  reg3exmidlemwe  4627
  Copyright terms: Public domain W3C validator