ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr GIF version

Theorem zfregfr 4640
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4397 . 2 ( E Fr 𝐴 ↔ ∀𝑠 FrFor E 𝐴𝑠)
2 bi2.04 248 . . . . . . 7 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ (𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
32albii 1494 . . . . . 6 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
4 df-ral 2491 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
53, 4bitr4i 187 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠))
6 sbim 1982 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠))
7 clelsb1 2312 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
8 clelsb1 2312 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝑠𝑦𝑠)
97, 8imbi12i 239 . . . . . . . . . . 11 (([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
106, 9bitri 184 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
1110ralbii 2514 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝑥 (𝑦𝐴𝑦𝑠))
12 ralcom3 2676 . . . . . . . . 9 (∀𝑦𝑥 (𝑦𝐴𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1311, 12bitri 184 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
14 epel 4357 . . . . . . . . . 10 (𝑦 E 𝑥𝑦𝑥)
1514imbi1i 238 . . . . . . . . 9 ((𝑦 E 𝑥𝑦𝑠) ↔ (𝑦𝑥𝑦𝑠))
1615ralbii 2514 . . . . . . . 8 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1713, 16bitr4i 187 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠))
1817imbi1i 238 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
1918ralbii 2514 . . . . 5 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
205, 19bitri 184 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
21 ax-setind 4603 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → ∀𝑥(𝑥𝐴𝑥𝑠))
22 ssalel 3189 . . . . 5 (𝐴𝑠 ↔ ∀𝑥(𝑥𝐴𝑥𝑠))
2321, 22sylibr 134 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → 𝐴𝑠)
2420, 23sylbir 135 . . 3 (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠)
25 df-frfor 4396 . . 3 ( FrFor E 𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2624, 25mpbir 146 . 2 FrFor E 𝐴𝑠
271, 26mpgbir 1477 1 E Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  [wsb 1786  wcel 2178  wral 2486  wss 3174   class class class wbr 4059   E cep 4352   FrFor wfrfor 4392   Fr wfr 4393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-eprel 4354  df-frfor 4396  df-frind 4397
This theorem is referenced by:  ordfr  4641  wessep  4644  reg3exmidlemwe  4645
  Copyright terms: Public domain W3C validator