| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reean | GIF version | ||
| Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| reean.1 | ⊢ Ⅎ𝑦𝜑 |
| reean.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| reean | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝜑 ∧ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) | |
| 2 | 1 | 2exbii 1628 | . . 3 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝜑 ∧ 𝜓)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 3 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 4 | reean.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 5 | 3, 4 | nfan 1587 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 6 | nfv 1550 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 7 | reean.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1587 | . . . 4 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐵 ∧ 𝜓) |
| 9 | 5, 8 | eean 1958 | . . 3 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝑦 ∈ 𝐵 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 10 | 2, 9 | bitri 184 | . 2 ⊢ (∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝜑 ∧ 𝜓)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 11 | r2ex 2525 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝜑 ∧ 𝜓))) | |
| 12 | df-rex 2489 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 13 | df-rex 2489 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓)) | |
| 14 | 12, 13 | anbi12i 460 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜓))) |
| 15 | 10, 11, 14 | 3bitr4i 212 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 Ⅎwnf 1482 ∃wex 1514 ∈ wcel 2175 ∃wrex 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 |
| This theorem is referenced by: reeanv 2675 |
| Copyright terms: Public domain | W3C validator |