ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reean GIF version

Theorem reean 2638
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
reean.1 𝑦𝜑
reean.2 𝑥𝜓
Assertion
Ref Expression
reean (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem reean
StepHypRef Expression
1 an4 581 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)))
212exbii 1599 . . 3 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ ∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)))
3 nfv 1521 . . . . 5 𝑦 𝑥𝐴
4 reean.1 . . . . 5 𝑦𝜑
53, 4nfan 1558 . . . 4 𝑦(𝑥𝐴𝜑)
6 nfv 1521 . . . . 5 𝑥 𝑦𝐵
7 reean.2 . . . . 5 𝑥𝜓
86, 7nfan 1558 . . . 4 𝑥(𝑦𝐵𝜓)
95, 8eean 1924 . . 3 (∃𝑥𝑦((𝑥𝐴𝜑) ∧ (𝑦𝐵𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
102, 9bitri 183 . 2 (∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
11 r2ex 2490 . 2 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ ∃𝑥𝑦((𝑥𝐴𝑦𝐵) ∧ (𝜑𝜓)))
12 df-rex 2454 . . 3 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
13 df-rex 2454 . . 3 (∃𝑦𝐵 𝜓 ↔ ∃𝑦(𝑦𝐵𝜓))
1412, 13anbi12i 457 . 2 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃𝑦(𝑦𝐵𝜓)))
1510, 11, 143bitr4i 211 1 (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wnf 1453  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454
This theorem is referenced by:  reeanv  2639
  Copyright terms: Public domain W3C validator