Proof of Theorem tgss2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐵 =
∪ 𝐶) | 
| 2 |   | uniexg 4474 | 
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | 
| 3 | 2 | adantr 276 | 
. . . . 5
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐵
∈ V) | 
| 4 | 1, 3 | eqeltrrd 2274 | 
. . . 4
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → ∪ 𝐶
∈ V) | 
| 5 |   | uniexb 4508 | 
. . . 4
⊢ (𝐶 ∈ V ↔ ∪ 𝐶
∈ V) | 
| 6 | 4, 5 | sylibr 134 | 
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → 𝐶 ∈ V) | 
| 7 |   | tgss3 14314 | 
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) | 
| 8 | 6, 7 | syldan 282 | 
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) →
((topGen‘𝐵) ⊆
(topGen‘𝐶) ↔
𝐵 ⊆
(topGen‘𝐶))) | 
| 9 |   | eltg2b 14290 | 
. . . . . . 7
⊢ (𝐶 ∈ V → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) | 
| 10 | 6, 9 | syl 14 | 
. . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) | 
| 11 |   | elunii 3844 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ ∪ 𝐵) | 
| 12 | 11 | ancoms 268 | 
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦) → 𝑥 ∈ ∪ 𝐵) | 
| 13 |   | biimt 241 | 
. . . . . . . 8
⊢ (𝑥 ∈ ∪ 𝐵
→ (∃𝑧 ∈
𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦) → (∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 15 | 14 | ralbidva 2493 | 
. . . . . 6
⊢ (𝑦 ∈ 𝐵 → (∀𝑥 ∈ 𝑦 ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 16 | 10, 15 | sylan9bb 462 | 
. . . . 5
⊢ (((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ 𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 17 |   | ralcom3 2665 | 
. . . . 5
⊢
(∀𝑥 ∈
𝑦 (𝑥 ∈ ∪ 𝐵 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) | 
| 18 | 16, 17 | bitrdi 196 | 
. . . 4
⊢ (((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) ∧ 𝑦 ∈ 𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 19 | 18 | ralbidva 2493 | 
. . 3
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (∀𝑦 ∈ 𝐵 𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 20 |   | dfss3 3173 | 
. . 3
⊢ (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑦 ∈ 𝐵 𝑦 ∈ (topGen‘𝐶)) | 
| 21 |   | ralcom 2660 | 
. . 3
⊢
(∀𝑥 ∈
∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐵 ∀𝑥 ∈ ∪ 𝐵(𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) | 
| 22 | 19, 20, 21 | 3bitr4g 223 | 
. 2
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) → (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) | 
| 23 | 8, 22 | bitrd 188 | 
1
⊢ ((𝐵 ∈ 𝑉 ∧ ∪ 𝐵 = ∪
𝐶) →
((topGen‘𝐵) ⊆
(topGen‘𝐶) ↔
∀𝑥 ∈ ∪ 𝐵∀𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 → ∃𝑧 ∈ 𝐶 (𝑥 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |