ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgss2 GIF version

Theorem tgss2 12873
Description: A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐶,𝑦,𝑧   𝑥,𝑉,𝑦
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem tgss2
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 = 𝐶)
2 uniexg 4424 . . . . . 6 (𝐵𝑉 𝐵 ∈ V)
32adantr 274 . . . . 5 ((𝐵𝑉 𝐵 = 𝐶) → 𝐵 ∈ V)
41, 3eqeltrrd 2248 . . . 4 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
5 uniexb 4458 . . . 4 (𝐶 ∈ V ↔ 𝐶 ∈ V)
64, 5sylibr 133 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → 𝐶 ∈ V)
7 tgss3 12872 . . 3 ((𝐵𝑉𝐶 ∈ V) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
86, 7syldan 280 . 2 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
9 eltg2b 12848 . . . . . . 7 (𝐶 ∈ V → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
106, 9syl 14 . . . . . 6 ((𝐵𝑉 𝐵 = 𝐶) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦)))
11 elunii 3801 . . . . . . . . 9 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
1211ancoms 266 . . . . . . . 8 ((𝑦𝐵𝑥𝑦) → 𝑥 𝐵)
13 biimt 240 . . . . . . . 8 (𝑥 𝐵 → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1412, 13syl 14 . . . . . . 7 ((𝑦𝐵𝑥𝑦) → (∃𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1514ralbidva 2466 . . . . . 6 (𝑦𝐵 → (∀𝑥𝑦𝑧𝐶 (𝑥𝑧𝑧𝑦) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1610, 15sylan9bb 459 . . . . 5 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
17 ralcom3 2637 . . . . 5 (∀𝑥𝑦 (𝑥 𝐵 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
1816, 17bitrdi 195 . . . 4 (((𝐵𝑉 𝐵 = 𝐶) ∧ 𝑦𝐵) → (𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
1918ralbidva 2466 . . 3 ((𝐵𝑉 𝐵 = 𝐶) → (∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
20 dfss3 3137 . . 3 (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑦𝐵 𝑦 ∈ (topGen‘𝐶))
21 ralcom 2633 . . 3 (∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)) ↔ ∀𝑦𝐵𝑥 𝐵(𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦)))
2219, 20, 213bitr4g 222 . 2 ((𝐵𝑉 𝐵 = 𝐶) → (𝐵 ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
238, 22bitrd 187 1 ((𝐵𝑉 𝐵 = 𝐶) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ ∀𝑥 𝐵𝑦𝐵 (𝑥𝑦 → ∃𝑧𝐶 (𝑥𝑧𝑧𝑦))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  wral 2448  wrex 2449  Vcvv 2730  wss 3121   cuni 3796  cfv 5198  topGenctg 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-topgen 12600
This theorem is referenced by:  metss  13288
  Copyright terms: Public domain W3C validator