Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rsp2e | GIF version |
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) |
Ref | Expression |
---|---|
rsp2e | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
2 | rspe 2519 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
3 | 2 | 3adant1 1010 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) |
4 | 19.8a 1583 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
5 | 1, 3, 4 | syl2anc 409 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
6 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
7 | 5, 6 | sylibr 133 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∃wex 1485 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-rex 2454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |