ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp2e GIF version

Theorem rsp2e 2521
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.)
Assertion
Ref Expression
rsp2e ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)

Proof of Theorem rsp2e
StepHypRef Expression
1 simp1 992 . . 3 ((𝑥𝐴𝑦𝐵𝜑) → 𝑥𝐴)
2 rspe 2519 . . . 4 ((𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
323adant1 1010 . . 3 ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
4 19.8a 1583 . . 3 ((𝑥𝐴 ∧ ∃𝑦𝐵 𝜑) → ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
51, 3, 4syl2anc 409 . 2 ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
6 df-rex 2454 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝜑))
75, 6sylibr 133 1 ((𝑥𝐴𝑦𝐵𝜑) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-3an 975  df-rex 2454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator