Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspec | GIF version |
Description: Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rspec.1 | ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
Ref | Expression |
---|---|
rspec | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspec.1 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 | |
2 | rsp 2504 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ∀wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-4 1490 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: rspec2 2546 vtoclri 2787 isarep2 5257 ecopover 6578 ecopoverg 6581 indstr 9504 |
Copyright terms: Public domain | W3C validator |