ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rsp2 GIF version

Theorem rsp2 2527
Description: Restricted specialization. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 2524 . . 3 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 rsp 2524 . . 3 (∀𝑦𝐵 𝜑 → (𝑦𝐵𝜑))
31, 2syl6 33 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 → (𝑥𝐴 → (𝑦𝐵𝜑)))
43impd 254 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-ral 2460
This theorem is referenced by:  ralidm  3525  sowlin  4322  cmncom  13110  cnmpt21  13830  cnmpt2t  13832  cnmpt22  13833  cnmptcom  13837
  Copyright terms: Public domain W3C validator