ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp11 GIF version

Theorem simp11 1022
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp11 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)

Proof of Theorem simp11
StepHypRef Expression
1 simp1 992 . 2 ((𝜑𝜓𝜒) → 𝜑)
213ad2ant1 1013 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  simpl11  1067  simpr11  1076  simp111  1121  simp211  1130  simp311  1139  frecsuclem  6385  coprimeprodsq  12211  pythagtriplem14  12231  pythagtrip  12237
  Copyright terms: Public domain W3C validator