ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp11 GIF version

Theorem simp11 1030
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp11 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)

Proof of Theorem simp11
StepHypRef Expression
1 simp1 1000 . 2 ((𝜑𝜓𝜒) → 𝜑)
213ad2ant1 1021 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  simpl11  1075  simpr11  1084  simp111  1129  simp211  1138  simp311  1147  frecsuclem  6502  coprimeprodsq  12630  pythagtriplem14  12650  pythagtrip  12656
  Copyright terms: Public domain W3C validator