| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp12 | GIF version | ||
| Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp12 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1022 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant1 1042 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl12 1097 simpr12 1106 simp112 1151 simp212 1160 simp312 1169 frecsuclem 6542 dvdsgcd 12519 coprimeprodsq 12766 pythagtriplem4 12777 pythagtriplem13 12785 pythagtriplem14 12786 pythagtriplem16 12788 pythagtrip 12792 pceu 12804 |
| Copyright terms: Public domain | W3C validator |