ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp12 GIF version

Theorem simp12 1018
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp12 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp12
StepHypRef Expression
1 simp2 988 . 2 ((𝜑𝜓𝜒) → 𝜓)
213ad2ant1 1008 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  simpl12  1063  simpr12  1072  simp112  1117  simp212  1126  simp312  1135  frecsuclem  6374  dvdsgcd  11945  coprimeprodsq  12189  pythagtriplem4  12200  pythagtriplem13  12208  pythagtriplem14  12209  pythagtriplem16  12211  pythagtrip  12215  pceu  12227
  Copyright terms: Public domain W3C validator