Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp12 | GIF version |
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.) |
Ref | Expression |
---|---|
simp12 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant1 1013 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simpl12 1068 simpr12 1077 simp112 1122 simp212 1131 simp312 1140 frecsuclem 6385 dvdsgcd 11967 coprimeprodsq 12211 pythagtriplem4 12222 pythagtriplem13 12230 pythagtriplem14 12231 pythagtriplem16 12233 pythagtrip 12237 pceu 12249 |
Copyright terms: Public domain | W3C validator |