ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp12 GIF version

Theorem simp12 1028
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp12 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp12
StepHypRef Expression
1 simp2 998 . 2 ((𝜑𝜓𝜒) → 𝜓)
213ad2ant1 1018 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  simpl12  1073  simpr12  1082  simp112  1127  simp212  1136  simp312  1145  frecsuclem  6397  dvdsgcd  11978  coprimeprodsq  12222  pythagtriplem4  12233  pythagtriplem13  12241  pythagtriplem14  12242  pythagtriplem16  12244  pythagtrip  12248  pceu  12260
  Copyright terms: Public domain W3C validator