ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp12 GIF version

Theorem simp12 1052
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp12 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)

Proof of Theorem simp12
StepHypRef Expression
1 simp2 1022 . 2 ((𝜑𝜓𝜒) → 𝜓)
213ad2ant1 1042 1 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  simpl12  1097  simpr12  1106  simp112  1151  simp212  1160  simp312  1169  frecsuclem  6542  dvdsgcd  12519  coprimeprodsq  12766  pythagtriplem4  12777  pythagtriplem13  12785  pythagtriplem14  12786  pythagtriplem16  12788  pythagtrip  12792  pceu  12804
  Copyright terms: Public domain W3C validator