ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtrip GIF version

Theorem pythagtrip 12266
Description: Parameterize the Pythagorean triples. If 𝐴, 𝐵, and 𝐶 are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
pythagtrip ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛   𝐵,𝑘,𝑚,𝑛   𝐶,𝑘,𝑚,𝑛

Proof of Theorem pythagtrip
StepHypRef Expression
1 divgcdodd 12126 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
213adant3 1017 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
32adantr 276 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))))
4 pythagtriplem19 12265 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
543expia 1205 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
6 simp12 1028 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 𝐵 ∈ ℕ)
7 simp11 1027 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 𝐴 ∈ ℕ)
8 simp13 1029 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 𝐶 ∈ ℕ)
9 nnsqcl 10575 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℕ)
109nncnd 8922 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐴↑2) ∈ ℂ)
11103ad2ant1 1018 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
12 nnsqcl 10575 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℕ)
1312nncnd 8922 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → (𝐵↑2) ∈ ℂ)
14133ad2ant2 1019 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈ ℂ)
1511, 14addcomd 8098 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴↑2) + (𝐵↑2)) = ((𝐵↑2) + (𝐴↑2)))
1615eqeq1d 2186 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)))
1716biimpa 296 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
18173adant3 1017 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
19 nnz 9261 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
20193ad2ant1 1018 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
21 nnz 9261 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
22213ad2ant2 1019 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2322adantr 276 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 𝐵 ∈ ℤ)
24 gcdcom 11957 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
2520, 23, 24syl2an2r 595 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐴 gcd 𝐵) = (𝐵 gcd 𝐴))
2625oveq2d 5885 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐵 / (𝐴 gcd 𝐵)) = (𝐵 / (𝐵 gcd 𝐴)))
2726breq2d 4012 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ 2 ∥ (𝐵 / (𝐵 gcd 𝐴))))
2827notbid 667 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) ↔ ¬ 2 ∥ (𝐵 / (𝐵 gcd 𝐴))))
2928biimp3a 1345 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐵 / (𝐵 gcd 𝐴)))
30 pythagtriplem19 12265 . . . . . . . 8 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐵 gcd 𝐴))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
316, 7, 8, 18, 29, 30syl311anc 1252 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
32313expia 1205 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
335, 32orim12d 786 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
343, 33mpd 13 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
35 simplll 533 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℕ)
36 simpllr 534 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℕ)
37 nnz 9261 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
3837adantl 277 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
39 simplrr 536 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℕ)
4039nnzd 9363 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℤ)
41 zsqcl 10576 . . . . . . . . . . . . . 14 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
4240, 41syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (𝑚↑2) ∈ ℤ)
43 simplrl 535 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℕ)
4443nnzd 9363 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 𝑛 ∈ ℤ)
45 zsqcl 10576 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → (𝑛↑2) ∈ ℤ)
4644, 45syl 14 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (𝑛↑2) ∈ ℤ)
4742, 46zsubcld 9369 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → ((𝑚↑2) − (𝑛↑2)) ∈ ℤ)
4838, 47zmulcld 9370 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ ℤ)
49 2z 9270 . . . . . . . . . . . . . 14 2 ∈ ℤ
5049a1i 9 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → 2 ∈ ℤ)
5140, 44zmulcld 9370 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (𝑚 · 𝑛) ∈ ℤ)
5250, 51zmulcld 9370 . . . . . . . . . . . 12 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑚 · 𝑛)) ∈ ℤ)
5338, 52zmulcld 9370 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (𝑘 · (2 · (𝑚 · 𝑛))) ∈ ℤ)
54 preq12bg 3771 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ ((𝑘 · ((𝑚↑2) − (𝑛↑2))) ∈ ℤ ∧ (𝑘 · (2 · (𝑚 · 𝑛))) ∈ ℤ)) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
5535, 36, 48, 53, 54syl22anc 1239 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))))))
5655anbi1d 465 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑘 ∈ ℕ) → (({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
5756rexbidva 2474 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) → (∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
58572rexbidva 2500 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
59 andir 819 . . . . . . . . . . 11 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
60 df-3an 980 . . . . . . . . . . . 12 ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
61 df-3an 980 . . . . . . . . . . . 12 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
6260, 61orbi12i 764 . . . . . . . . . . 11 (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2)))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
63 3ancoma 985 . . . . . . . . . . . 12 ((𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
6463orbi2i 762 . . . . . . . . . . 11 (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
6559, 62, 643bitr2i 208 . . . . . . . . . 10 ((((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
6665rexbii 2484 . . . . . . . . 9 (∃𝑘 ∈ ℕ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
67662rexbii 2486 . . . . . . . 8 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
68 r19.43 2635 . . . . . . . . . 10 (∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
69682rexbii 2486 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
70 r19.43 2635 . . . . . . . . . . 11 (∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7170rexbii 2484 . . . . . . . . . 10 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ ∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
72 r19.43 2635 . . . . . . . . . 10 (∃𝑛 ∈ ℕ (∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7371, 72bitri 184 . . . . . . . . 9 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7469, 73bitri 184 . . . . . . . 8 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7567, 74bitri 184 . . . . . . 7 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛)))) ∨ (𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
7658, 75bitrdi 196 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
77763adant3 1017 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
7877adantr 276 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ∨ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐵 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐴 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))))
7934, 78mpbird 167 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))))
8079ex 115 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
81 pythagtriplem2 12249 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
82813adant3 1017 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)))
8380, 82impbid 129 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ ({𝐴, 𝐵} = {(𝑘 · ((𝑚↑2) − (𝑛↑2))), (𝑘 · (2 · (𝑚 · 𝑛)))} ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wrex 2456  {cpr 3592   class class class wbr 4000  (class class class)co 5869  cc 7800   + caddc 7805   · cmul 7807  cmin 8118   / cdiv 8618  cn 8908  2c2 8959  cz 9242  cexp 10505  cdvds 11778   gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator