ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pythagtrip GIF version

Theorem pythagtrip 12302
Description: Parameterize the Pythagorean triples. If ๐ด, ๐ต, and ๐ถ are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
Assertion
Ref Expression
pythagtrip ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
Distinct variable groups:   ๐ด,๐‘˜,๐‘š,๐‘›   ๐ต,๐‘˜,๐‘š,๐‘›   ๐ถ,๐‘˜,๐‘š,๐‘›

Proof of Theorem pythagtrip
StepHypRef Expression
1 divgcdodd 12162 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต)) โˆจ ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))))
213adant3 1019 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต)) โˆจ ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))))
32adantr 276 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต)) โˆจ ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))))
4 pythagtriplem19 12301 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต))) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
543expia 1207 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
6 simp12 1030 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ ๐ต โˆˆ โ„•)
7 simp11 1029 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ ๐ด โˆˆ โ„•)
8 simp13 1031 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ ๐ถ โˆˆ โ„•)
9 nnsqcl 10609 . . . . . . . . . . . . . 14 (๐ด โˆˆ โ„• โ†’ (๐ดโ†‘2) โˆˆ โ„•)
109nncnd 8952 . . . . . . . . . . . . 13 (๐ด โˆˆ โ„• โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
11103ad2ant1 1020 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
12 nnsqcl 10609 . . . . . . . . . . . . . 14 (๐ต โˆˆ โ„• โ†’ (๐ตโ†‘2) โˆˆ โ„•)
1312nncnd 8952 . . . . . . . . . . . . 13 (๐ต โˆˆ โ„• โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
14133ad2ant2 1021 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
1511, 14addcomd 8127 . . . . . . . . . . 11 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = ((๐ตโ†‘2) + (๐ดโ†‘2)))
1615eqeq1d 2198 . . . . . . . . . 10 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†” ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2)))
1716biimpa 296 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2))
18173adant3 1019 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2))
19 nnz 9291 . . . . . . . . . . . . . 14 (๐ด โˆˆ โ„• โ†’ ๐ด โˆˆ โ„ค)
20193ad2ant1 1020 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„ค)
21 nnz 9291 . . . . . . . . . . . . . . 15 (๐ต โˆˆ โ„• โ†’ ๐ต โˆˆ โ„ค)
22213ad2ant2 1021 . . . . . . . . . . . . . 14 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„ค)
2322adantr 276 . . . . . . . . . . . . 13 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ ๐ต โˆˆ โ„ค)
24 gcdcom 11993 . . . . . . . . . . . . 13 ((๐ด โˆˆ โ„ค โˆง ๐ต โˆˆ โ„ค) โ†’ (๐ด gcd ๐ต) = (๐ต gcd ๐ด))
2520, 23, 24syl2an2r 595 . . . . . . . . . . . 12 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (๐ด gcd ๐ต) = (๐ต gcd ๐ด))
2625oveq2d 5907 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (๐ต / (๐ด gcd ๐ต)) = (๐ต / (๐ต gcd ๐ด)))
2726breq2d 4030 . . . . . . . . . 10 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (2 โˆฅ (๐ต / (๐ด gcd ๐ต)) โ†” 2 โˆฅ (๐ต / (๐ต gcd ๐ด))))
2827notbid 668 . . . . . . . . 9 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต)) โ†” ยฌ 2 โˆฅ (๐ต / (๐ต gcd ๐ด))))
2928biimp3a 1356 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ ยฌ 2 โˆฅ (๐ต / (๐ต gcd ๐ด)))
30 pythagtriplem19 12301 . . . . . . . 8 (((๐ต โˆˆ โ„• โˆง ๐ด โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ตโ†‘2) + (๐ดโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ต gcd ๐ด))) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
316, 7, 8, 18, 29, 30syl311anc 1263 . . . . . . 7 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โˆง ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
32313expia 1207 . . . . . 6 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต)) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
335, 32orim12d 787 . . . . 5 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ ((ยฌ 2 โˆฅ (๐ด / (๐ด gcd ๐ต)) โˆจ ยฌ 2 โˆฅ (๐ต / (๐ด gcd ๐ต))) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
343, 33mpd 13 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
35 simplll 533 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐ด โˆˆ โ„•)
36 simpllr 534 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐ต โˆˆ โ„•)
37 nnz 9291 . . . . . . . . . . . . 13 (๐‘˜ โˆˆ โ„• โ†’ ๐‘˜ โˆˆ โ„ค)
3837adantl 277 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘˜ โˆˆ โ„ค)
39 simplrr 536 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘š โˆˆ โ„•)
4039nnzd 9393 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘š โˆˆ โ„ค)
41 zsqcl 10610 . . . . . . . . . . . . . 14 (๐‘š โˆˆ โ„ค โ†’ (๐‘šโ†‘2) โˆˆ โ„ค)
4240, 41syl 14 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘šโ†‘2) โˆˆ โ„ค)
43 simplrl 535 . . . . . . . . . . . . . . 15 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„•)
4443nnzd 9393 . . . . . . . . . . . . . 14 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ๐‘› โˆˆ โ„ค)
45 zsqcl 10610 . . . . . . . . . . . . . 14 (๐‘› โˆˆ โ„ค โ†’ (๐‘›โ†‘2) โˆˆ โ„ค)
4644, 45syl 14 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘›โ†‘2) โˆˆ โ„ค)
4742, 46zsubcld 9399 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)) โˆˆ โ„ค)
4838, 47zmulcld 9400 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆˆ โ„ค)
49 2z 9300 . . . . . . . . . . . . . 14 2 โˆˆ โ„ค
5049a1i 9 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ 2 โˆˆ โ„ค)
5140, 44zmulcld 9400 . . . . . . . . . . . . 13 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘š ยท ๐‘›) โˆˆ โ„ค)
5250, 51zmulcld 9400 . . . . . . . . . . . 12 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (2 ยท (๐‘š ยท ๐‘›)) โˆˆ โ„ค)
5338, 52zmulcld 9400 . . . . . . . . . . 11 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆˆ โ„ค)
54 preq12bg 3788 . . . . . . . . . . 11 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง ((๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆˆ โ„ค โˆง (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆˆ โ„ค)) โ†’ ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))))))
5535, 36, 48, 53, 54syl22anc 1250 . . . . . . . . . 10 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))))))
5655anbi1d 465 . . . . . . . . 9 ((((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โˆง ๐‘˜ โˆˆ โ„•) โ†’ (({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
5756rexbidva 2487 . . . . . . . 8 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โˆง (๐‘› โˆˆ โ„• โˆง ๐‘š โˆˆ โ„•)) โ†’ (โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘˜ โˆˆ โ„• (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
58572rexbidva 2513 . . . . . . 7 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
59 andir 820 . . . . . . . . . . 11 ((((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
60 df-3an 982 . . . . . . . . . . . 12 ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
61 df-3an 982 . . . . . . . . . . . 12 ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
6260, 61orbi12i 765 . . . . . . . . . . 11 (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2)))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
63 3ancoma 987 . . . . . . . . . . . 12 ((๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
6463orbi2i 763 . . . . . . . . . . 11 (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
6559, 62, 643bitr2i 208 . . . . . . . . . 10 ((((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
6665rexbii 2497 . . . . . . . . 9 (โˆƒ๐‘˜ โˆˆ โ„• (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
67662rexbii 2499 . . . . . . . 8 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
68 r19.43 2648 . . . . . . . . . 10 (โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
69682rexbii 2499 . . . . . . . . 9 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
70 r19.43 2648 . . . . . . . . . . 11 (โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
7170rexbii 2497 . . . . . . . . . 10 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” โˆƒ๐‘› โˆˆ โ„• (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
72 r19.43 2648 . . . . . . . . . 10 (โˆƒ๐‘› โˆˆ โ„• (โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
7371, 72bitri 184 . . . . . . . . 9 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• (โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
7469, 73bitri 184 . . . . . . . 8 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
7567, 74bitri 184 . . . . . . 7 (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (((๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))) โˆจ (๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
7658, 75bitrdi 196 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
77763adant3 1019 . . . . 5 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
7877adantr 276 . . . 4 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†” (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ด = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ต = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โˆจ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• (๐ต = (๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))) โˆง ๐ด = (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›))) โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))))
7934, 78mpbird 167 . . 3 (((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))))
8079ex 115 . 2 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†’ โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
81 pythagtriplem2 12285 . . 3 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
82813adant3 1019 . 2 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2)))) โ†’ ((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2)))
8380, 82impbid 129 1 ((๐ด โˆˆ โ„• โˆง ๐ต โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) = (๐ถโ†‘2) โ†” โˆƒ๐‘› โˆˆ โ„• โˆƒ๐‘š โˆˆ โ„• โˆƒ๐‘˜ โˆˆ โ„• ({๐ด, ๐ต} = {(๐‘˜ ยท ((๐‘šโ†‘2) โˆ’ (๐‘›โ†‘2))), (๐‘˜ ยท (2 ยท (๐‘š ยท ๐‘›)))} โˆง ๐ถ = (๐‘˜ ยท ((๐‘šโ†‘2) + (๐‘›โ†‘2))))))
Colors of variables: wff set class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 709   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160  โˆƒwrex 2469  {cpr 3608   class class class wbr 4018  (class class class)co 5891  โ„‚cc 7828   + caddc 7833   ยท cmul 7835   โˆ’ cmin 8147   / cdiv 8648  โ„•cn 8938  2c2 8989  โ„คcz 9272  โ†‘cexp 10538   โˆฅ cdvds 11813   gcd cgcd 11962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7921  ax-resscn 7922  ax-1cn 7923  ax-1re 7924  ax-icn 7925  ax-addcl 7926  ax-addrcl 7927  ax-mulcl 7928  ax-mulrcl 7929  ax-addcom 7930  ax-mulcom 7931  ax-addass 7932  ax-mulass 7933  ax-distr 7934  ax-i2m1 7935  ax-0lt1 7936  ax-1rid 7937  ax-0id 7938  ax-rnegex 7939  ax-precex 7940  ax-cnre 7941  ax-pre-ltirr 7942  ax-pre-ltwlin 7943  ax-pre-lttrn 7944  ax-pre-apti 7945  ax-pre-ltadd 7946  ax-pre-mulgt0 7947  ax-pre-mulext 7948  ax-arch 7949  ax-caucvg 7950
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-1o 6435  df-2o 6436  df-er 6553  df-en 6759  df-sup 7002  df-pnf 8013  df-mnf 8014  df-xr 8015  df-ltxr 8016  df-le 8017  df-sub 8149  df-neg 8150  df-reap 8551  df-ap 8558  df-div 8649  df-inn 8939  df-2 8997  df-3 8998  df-4 8999  df-n0 9196  df-z 9273  df-uz 9548  df-q 9639  df-rp 9673  df-fz 10028  df-fzo 10162  df-fl 10289  df-mod 10342  df-seqfrec 10465  df-exp 10539  df-cj 10870  df-re 10871  df-im 10872  df-rsqrt 11026  df-abs 11027  df-dvds 11814  df-gcd 11963  df-prm 12127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator