ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem GIF version

Theorem frecsuclem 6103
Description: Lemma for frecsuc 6104. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
Hypothesis
Ref Expression
frecsuclem.g 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝐵,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑔,𝐺,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑆(𝑔)   𝐺(𝑧)

Proof of Theorem frecsuclem
Dummy variables 𝑓 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6088 . . . . . . . . . . . . 13 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 frecsuclem.g . . . . . . . . . . . . . . 15 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3 recseq 6003 . . . . . . . . . . . . . . 15 (𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
42, 3ax-mp 7 . . . . . . . . . . . . . 14 recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
54reseq1i 4667 . . . . . . . . . . . . 13 (recs(𝐺) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
61, 5eqtr4i 2106 . . . . . . . . . . . 12 frec(𝐹, 𝐴) = (recs(𝐺) ↾ ω)
76fveq1i 5254 . . . . . . . . . . 11 (frec(𝐹, 𝐴)‘suc 𝐵) = ((recs(𝐺) ↾ ω)‘suc 𝐵)
8 peano2 4373 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
9 fvres 5274 . . . . . . . . . . . 12 (suc 𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
108, 9syl 14 . . . . . . . . . . 11 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
117, 10syl5eq 2127 . . . . . . . . . 10 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
12113ad2ant3 962 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
13 eqid 2083 . . . . . . . . . . 11 recs(𝐺) = recs(𝐺)
142funmpt2 5006 . . . . . . . . . . . 12 Fun 𝐺
1514a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun 𝐺)
16 ordom 4384 . . . . . . . . . . . 12 Ord ω
1716a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Ord ω)
18 vex 2615 . . . . . . . . . . . . . 14 𝑓 ∈ V
1918a1i 9 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓 ∈ V)
20 simp2 940 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
21 simp3 941 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
22 simp11 969 . . . . . . . . . . . . . . 15 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
23 fveq2 5253 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
2423eleq1d 2151 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
2524cbvralv 2583 . . . . . . . . . . . . . . 15 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
2622, 25sylib 120 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
27 simp12 970 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2820, 21, 26, 27frecabcl 6096 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
29 dmeq 4594 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3029eqeq1d 2091 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
31 fveq1 5252 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
3231fveq2d 5257 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
3332eleq2d 2152 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
3430, 33anbi12d 457 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3534rexbidv 2375 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3629eqeq1d 2091 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3736anbi1d 453 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3835, 37orbi12d 740 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3938abbidv 2200 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4039, 2fvmptg 5325 . . . . . . . . . . . . 13 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4119, 28, 40syl2anc 403 . . . . . . . . . . . 12 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4241, 28eqeltrd 2159 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) ∈ 𝑆)
43 limom 4391 . . . . . . . . . . . . . . 15 Lim ω
44 limuni 4187 . . . . . . . . . . . . . . 15 (Lim ω → ω = ω)
4543, 44ax-mp 7 . . . . . . . . . . . . . 14 ω = ω
4645eleq2i 2149 . . . . . . . . . . . . 13 (𝑦 ∈ ω ↔ 𝑦 ω)
47 peano2 4373 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4846, 47sylbir 133 . . . . . . . . . . . 12 (𝑦 ω → suc 𝑦 ∈ ω)
4948adantl 271 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
5045eleq2i 2149 . . . . . . . . . . . . 13 (suc 𝐵 ∈ ω ↔ suc 𝐵 ω)
518, 50sylib 120 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ω)
52513ad2ant3 962 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ω)
5313, 15, 17, 42, 49, 52tfrcldm 6060 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ dom recs(𝐺))
5413tfr2a 6018 . . . . . . . . . 10 (suc 𝐵 ∈ dom recs(𝐺) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5553, 54syl 14 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5612, 55eqtrd 2115 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
57 tfrfun 6017 . . . . . . . . . . 11 Fun recs(𝐺)
5857a1i 9 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun recs(𝐺))
5983ad2ant3 962 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ ω)
60 resfunexg 5458 . . . . . . . . . 10 ((Fun recs(𝐺) ∧ suc 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
6158, 59, 60syl2anc 403 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
62 frecfcl 6102 . . . . . . . . . . . . 13 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
636feq1i 5107 . . . . . . . . . . . . 13 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (recs(𝐺) ↾ ω):ω⟶𝑆)
6462, 63sylib 120 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (recs(𝐺) ↾ ω):ω⟶𝑆)
65643adant3 959 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ ω):ω⟶𝑆)
66 simp3 941 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐵 ∈ ω)
67 ordelsuc 4285 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
6816, 67mpan2 416 . . . . . . . . . . . . 13 (𝐵 ∈ ω → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
69683ad2ant3 962 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
7066, 69mpbid 145 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ⊆ ω)
71 fssres2 5136 . . . . . . . . . . 11 (((recs(𝐺) ↾ ω):ω⟶𝑆 ∧ suc 𝐵 ⊆ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
7265, 70, 71syl2anc 403 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
73 simp1 939 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
7473, 25sylib 120 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
75 simp2 940 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐴𝑆)
7659, 72, 74, 75frecabcl 6096 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
77 dmeq 4594 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵))
7877eqeq1d 2091 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚))
79 fveq1 5252 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚))
8079fveq2d 5257 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))
8180eleq2d 2152 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))
8278, 81anbi12d 457 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8382rexbidv 2375 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8477eqeq1d 2091 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅))
8584anbi1d 453 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
8683, 85orbi12d 740 . . . . . . . . . . 11 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
8786abbidv 2200 . . . . . . . . . 10 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8887, 2fvmptg 5325 . . . . . . . . 9 (((recs(𝐺) ↾ suc 𝐵) ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8961, 76, 88syl2anc 403 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9056, 89eqtrd 2115 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9190abeq2d 2195 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
92 fdm 5119 . . . . . . . . . . . 12 ((recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆 → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
9372, 92syl 14 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
94 peano3 4374 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
95943ad2ant3 962 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ≠ ∅)
9693, 95eqnetrd 2273 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅)
9796neneqd 2270 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ dom (recs(𝐺) ↾ suc 𝐵) = ∅)
9897intnanrd 875 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))
99 biorf 696 . . . . . . . 8 (¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
10098, 99syl 14 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
101 orcom 680 . . . . . . 7 (((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
102100, 101syl6bb 194 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
10393eqeq1d 2091 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚))
104 vex 2615 . . . . . . . . . . . 12 𝑚 ∈ V
105 suc11g 4336 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
106104, 105mpan2 416 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
1071063ad2ant3 962 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
108103, 107bitrd 186 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝐵 = 𝑚))
109 eqcom 2085 . . . . . . . . 9 (𝐵 = 𝑚𝑚 = 𝐵)
110108, 109syl6bb 194 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑚 = 𝐵))
111110anbi1d 453 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
112111rexbidv 2375 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
11391, 102, 1123bitr2d 214 . . . . 5 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
114 fveq2 5253 . . . . . . . 8 (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵))
115114fveq2d 5257 . . . . . . 7 (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
116115eleq2d 2152 . . . . . 6 (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
117116ceqsrexbv 2736 . . . . 5 (∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
118113, 117syl6bb 194 . . . 4 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))))
1191183anibar 1107 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
120119eqrdv 2081 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
121 sucidg 4207 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
122 fvres 5274 . . . . . 6 (𝐵 ∈ suc 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
123121, 122syl 14 . . . . 5 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
1246fveq1i 5254 . . . . . 6 (frec(𝐹, 𝐴)‘𝐵) = ((recs(𝐺) ↾ ω)‘𝐵)
125 fvres 5274 . . . . . 6 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘𝐵) = (recs(𝐺)‘𝐵))
126124, 125syl5eq 2127 . . . . 5 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘𝐵) = (recs(𝐺)‘𝐵))
127123, 126eqtr4d 2118 . . . 4 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
1281273ad2ant3 962 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
129128fveq2d 5257 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
130120, 129eqtrd 2115 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 920   = wceq 1285  wcel 1434  {cab 2069  wne 2249  wral 2353  wrex 2354  Vcvv 2612  wss 2984  c0 3269   cuni 3627  cmpt 3865  Ord word 4153  Lim wlim 4155  suc csuc 4156  ωcom 4368  dom cdm 4401  cres 4403  Fun wfun 4963  wf 4965  cfv 4969  recscrecs 6001  freccfrec 6087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-recs 6002  df-frec 6088
This theorem is referenced by:  frecsuc  6104
  Copyright terms: Public domain W3C validator