ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem GIF version

Theorem frecsuclem 6473
Description: Lemma for frecsuc 6474. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
Hypothesis
Ref Expression
frecsuclem.g 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝐵,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑔,𝐺,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑆(𝑔)   𝐺(𝑧)

Proof of Theorem frecsuclem
Dummy variables 𝑓 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6458 . . . . . . . . . . . . 13 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 frecsuclem.g . . . . . . . . . . . . . . 15 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3 recseq 6373 . . . . . . . . . . . . . . 15 (𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
42, 3ax-mp 5 . . . . . . . . . . . . . 14 recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
54reseq1i 4943 . . . . . . . . . . . . 13 (recs(𝐺) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
61, 5eqtr4i 2220 . . . . . . . . . . . 12 frec(𝐹, 𝐴) = (recs(𝐺) ↾ ω)
76fveq1i 5562 . . . . . . . . . . 11 (frec(𝐹, 𝐴)‘suc 𝐵) = ((recs(𝐺) ↾ ω)‘suc 𝐵)
8 peano2 4632 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
9 fvres 5585 . . . . . . . . . . . 12 (suc 𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
108, 9syl 14 . . . . . . . . . . 11 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
117, 10eqtrid 2241 . . . . . . . . . 10 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
12113ad2ant3 1022 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
13 eqid 2196 . . . . . . . . . . 11 recs(𝐺) = recs(𝐺)
142funmpt2 5298 . . . . . . . . . . . 12 Fun 𝐺
1514a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun 𝐺)
16 ordom 4644 . . . . . . . . . . . 12 Ord ω
1716a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Ord ω)
18 vex 2766 . . . . . . . . . . . . . 14 𝑓 ∈ V
1918a1i 9 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓 ∈ V)
20 simp2 1000 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
21 simp3 1001 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
22 simp11 1029 . . . . . . . . . . . . . . 15 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
23 fveq2 5561 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
2423eleq1d 2265 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
2524cbvralv 2729 . . . . . . . . . . . . . . 15 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
2622, 25sylib 122 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
27 simp12 1030 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2820, 21, 26, 27frecabcl 6466 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
29 dmeq 4867 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3029eqeq1d 2205 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
31 fveq1 5560 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
3231fveq2d 5565 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
3332eleq2d 2266 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
3430, 33anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3534rexbidv 2498 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3629eqeq1d 2205 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3736anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3835, 37orbi12d 794 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3938abbidv 2314 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4039, 2fvmptg 5640 . . . . . . . . . . . . 13 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4119, 28, 40syl2anc 411 . . . . . . . . . . . 12 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4241, 28eqeltrd 2273 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) ∈ 𝑆)
43 limom 4651 . . . . . . . . . . . . . . 15 Lim ω
44 limuni 4432 . . . . . . . . . . . . . . 15 (Lim ω → ω = ω)
4543, 44ax-mp 5 . . . . . . . . . . . . . 14 ω = ω
4645eleq2i 2263 . . . . . . . . . . . . 13 (𝑦 ∈ ω ↔ 𝑦 ω)
47 peano2 4632 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4846, 47sylbir 135 . . . . . . . . . . . 12 (𝑦 ω → suc 𝑦 ∈ ω)
4948adantl 277 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
5045eleq2i 2263 . . . . . . . . . . . . 13 (suc 𝐵 ∈ ω ↔ suc 𝐵 ω)
518, 50sylib 122 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ω)
52513ad2ant3 1022 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ω)
5313, 15, 17, 42, 49, 52tfrcldm 6430 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ dom recs(𝐺))
5413tfr2a 6388 . . . . . . . . . 10 (suc 𝐵 ∈ dom recs(𝐺) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5553, 54syl 14 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5612, 55eqtrd 2229 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
57 tfrfun 6387 . . . . . . . . . . 11 Fun recs(𝐺)
5857a1i 9 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun recs(𝐺))
5983ad2ant3 1022 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ ω)
60 resfunexg 5786 . . . . . . . . . 10 ((Fun recs(𝐺) ∧ suc 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
6158, 59, 60syl2anc 411 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
62 frecfcl 6472 . . . . . . . . . . . . 13 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
636feq1i 5403 . . . . . . . . . . . . 13 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (recs(𝐺) ↾ ω):ω⟶𝑆)
6462, 63sylib 122 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (recs(𝐺) ↾ ω):ω⟶𝑆)
65643adant3 1019 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ ω):ω⟶𝑆)
66 simp3 1001 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐵 ∈ ω)
67 ordelsuc 4542 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
6816, 67mpan2 425 . . . . . . . . . . . . 13 (𝐵 ∈ ω → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
69683ad2ant3 1022 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
7066, 69mpbid 147 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ⊆ ω)
71 fssres2 5438 . . . . . . . . . . 11 (((recs(𝐺) ↾ ω):ω⟶𝑆 ∧ suc 𝐵 ⊆ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
7265, 70, 71syl2anc 411 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
73 simp1 999 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
7473, 25sylib 122 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
75 simp2 1000 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐴𝑆)
7659, 72, 74, 75frecabcl 6466 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
77 dmeq 4867 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵))
7877eqeq1d 2205 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚))
79 fveq1 5560 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚))
8079fveq2d 5565 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))
8180eleq2d 2266 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))
8278, 81anbi12d 473 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8382rexbidv 2498 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8477eqeq1d 2205 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅))
8584anbi1d 465 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
8683, 85orbi12d 794 . . . . . . . . . . 11 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
8786abbidv 2314 . . . . . . . . . 10 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8887, 2fvmptg 5640 . . . . . . . . 9 (((recs(𝐺) ↾ suc 𝐵) ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8961, 76, 88syl2anc 411 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9056, 89eqtrd 2229 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9190abeq2d 2309 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
92 fdm 5416 . . . . . . . . . . . 12 ((recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆 → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
9372, 92syl 14 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
94 peano3 4633 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
95943ad2ant3 1022 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ≠ ∅)
9693, 95eqnetrd 2391 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅)
9796neneqd 2388 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ dom (recs(𝐺) ↾ suc 𝐵) = ∅)
9897intnanrd 933 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))
99 biorf 745 . . . . . . . 8 (¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
10098, 99syl 14 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
101 orcom 729 . . . . . . 7 (((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
102100, 101bitrdi 196 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
10393eqeq1d 2205 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚))
104 vex 2766 . . . . . . . . . . . 12 𝑚 ∈ V
105 suc11g 4594 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
106104, 105mpan2 425 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
1071063ad2ant3 1022 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
108103, 107bitrd 188 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝐵 = 𝑚))
109 eqcom 2198 . . . . . . . . 9 (𝐵 = 𝑚𝑚 = 𝐵)
110108, 109bitrdi 196 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑚 = 𝐵))
111110anbi1d 465 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
112111rexbidv 2498 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
11391, 102, 1123bitr2d 216 . . . . 5 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
114 fveq2 5561 . . . . . . . 8 (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵))
115114fveq2d 5565 . . . . . . 7 (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
116115eleq2d 2266 . . . . . 6 (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
117116ceqsrexbv 2895 . . . . 5 (∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
118113, 117bitrdi 196 . . . 4 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))))
1191183anibar 1167 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
120119eqrdv 2194 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
121 sucidg 4452 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
122 fvres 5585 . . . . . 6 (𝐵 ∈ suc 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
123121, 122syl 14 . . . . 5 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
1246fveq1i 5562 . . . . . 6 (frec(𝐹, 𝐴)‘𝐵) = ((recs(𝐺) ↾ ω)‘𝐵)
125 fvres 5585 . . . . . 6 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘𝐵) = (recs(𝐺)‘𝐵))
126124, 125eqtrid 2241 . . . . 5 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘𝐵) = (recs(𝐺)‘𝐵))
127123, 126eqtr4d 2232 . . . 4 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
1281273ad2ant3 1022 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
129128fveq2d 5565 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
130120, 129eqtrd 2229 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wne 2367  wral 2475  wrex 2476  Vcvv 2763  wss 3157  c0 3451   cuni 3840  cmpt 4095  Ord word 4398  Lim wlim 4400  suc csuc 4401  ωcom 4627  dom cdm 4664  cres 4666  Fun wfun 5253  wf 5255  cfv 5259  recscrecs 6371  freccfrec 6457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-recs 6372  df-frec 6458
This theorem is referenced by:  frecsuc  6474
  Copyright terms: Public domain W3C validator