ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclem GIF version

Theorem frecsuclem 6459
Description: Lemma for frecsuc 6460. Just giving a name to a common expression to simplify the proof. (Contributed by Jim Kingdon, 29-Mar-2022.)
Hypothesis
Ref Expression
frecsuclem.g 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frecsuclem ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Distinct variable groups:   𝐴,𝑔,𝑚,𝑥   𝐵,𝑔,𝑚,𝑥   𝑔,𝐹,𝑚,𝑥   𝑧,𝐹,𝑚,𝑥   𝑔,𝐺,𝑚,𝑥   𝑆,𝑚,𝑥,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧)   𝑆(𝑔)   𝐺(𝑧)

Proof of Theorem frecsuclem
Dummy variables 𝑓 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frec 6444 . . . . . . . . . . . . 13 frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
2 frecsuclem.g . . . . . . . . . . . . . . 15 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
3 recseq 6359 . . . . . . . . . . . . . . 15 (𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}) → recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})))
42, 3ax-mp 5 . . . . . . . . . . . . . 14 recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))}))
54reseq1i 4938 . . . . . . . . . . . . 13 (recs(𝐺) ↾ ω) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})) ↾ ω)
61, 5eqtr4i 2217 . . . . . . . . . . . 12 frec(𝐹, 𝐴) = (recs(𝐺) ↾ ω)
76fveq1i 5555 . . . . . . . . . . 11 (frec(𝐹, 𝐴)‘suc 𝐵) = ((recs(𝐺) ↾ ω)‘suc 𝐵)
8 peano2 4627 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
9 fvres 5578 . . . . . . . . . . . 12 (suc 𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
108, 9syl 14 . . . . . . . . . . 11 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
117, 10eqtrid 2238 . . . . . . . . . 10 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
12113ad2ant3 1022 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵))
13 eqid 2193 . . . . . . . . . . 11 recs(𝐺) = recs(𝐺)
142funmpt2 5293 . . . . . . . . . . . 12 Fun 𝐺
1514a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun 𝐺)
16 ordom 4639 . . . . . . . . . . . 12 Ord ω
1716a1i 9 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Ord ω)
18 vex 2763 . . . . . . . . . . . . . 14 𝑓 ∈ V
1918a1i 9 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓 ∈ V)
20 simp2 1000 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑦 ∈ ω)
21 simp3 1001 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝑓:𝑦𝑆)
22 simp11 1029 . . . . . . . . . . . . . . 15 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
23 fveq2 5554 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
2423eleq1d 2262 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ 𝑆 ↔ (𝐹𝑤) ∈ 𝑆))
2524cbvralv 2726 . . . . . . . . . . . . . . 15 (∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆 ↔ ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
2622, 25sylib 122 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
27 simp12 1030 . . . . . . . . . . . . . 14 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → 𝐴𝑆)
2820, 21, 26, 27frecabcl 6452 . . . . . . . . . . . . 13 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
29 dmeq 4862 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3029eqeq1d 2202 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚))
31 fveq1 5553 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑓 → (𝑔𝑚) = (𝑓𝑚))
3231fveq2d 5558 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑓 → (𝐹‘(𝑔𝑚)) = (𝐹‘(𝑓𝑚)))
3332eleq2d 2263 . . . . . . . . . . . . . . . . . 18 (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓𝑚))))
3430, 33anbi12d 473 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3534rexbidv 2495 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚)))))
3629eqeq1d 2202 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅))
3736anbi1d 465 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥𝐴)))
3835, 37orbi12d 794 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))))
3938abbidv 2311 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4039, 2fvmptg 5633 . . . . . . . . . . . . 13 ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4119, 28, 40syl2anc 411 . . . . . . . . . . . 12 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚𝑥 ∈ (𝐹‘(𝑓𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥𝐴))})
4241, 28eqeltrd 2270 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦𝑆) → (𝐺𝑓) ∈ 𝑆)
43 limom 4646 . . . . . . . . . . . . . . 15 Lim ω
44 limuni 4427 . . . . . . . . . . . . . . 15 (Lim ω → ω = ω)
4543, 44ax-mp 5 . . . . . . . . . . . . . 14 ω = ω
4645eleq2i 2260 . . . . . . . . . . . . 13 (𝑦 ∈ ω ↔ 𝑦 ω)
47 peano2 4627 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
4846, 47sylbir 135 . . . . . . . . . . . 12 (𝑦 ω → suc 𝑦 ∈ ω)
4948adantl 277 . . . . . . . . . . 11 (((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) ∧ 𝑦 ω) → suc 𝑦 ∈ ω)
5045eleq2i 2260 . . . . . . . . . . . . 13 (suc 𝐵 ∈ ω ↔ suc 𝐵 ω)
518, 50sylib 122 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ω)
52513ad2ant3 1022 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ω)
5313, 15, 17, 42, 49, 52tfrcldm 6416 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ dom recs(𝐺))
5413tfr2a 6374 . . . . . . . . . 10 (suc 𝐵 ∈ dom recs(𝐺) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5553, 54syl 14 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
5612, 55eqtrd 2226 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵)))
57 tfrfun 6373 . . . . . . . . . . 11 Fun recs(𝐺)
5857a1i 9 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → Fun recs(𝐺))
5983ad2ant3 1022 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ∈ ω)
60 resfunexg 5779 . . . . . . . . . 10 ((Fun recs(𝐺) ∧ suc 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
6158, 59, 60syl2anc 411 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V)
62 frecfcl 6458 . . . . . . . . . . . . 13 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → frec(𝐹, 𝐴):ω⟶𝑆)
636feq1i 5396 . . . . . . . . . . . . 13 (frec(𝐹, 𝐴):ω⟶𝑆 ↔ (recs(𝐺) ↾ ω):ω⟶𝑆)
6462, 63sylib 122 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆) → (recs(𝐺) ↾ ω):ω⟶𝑆)
65643adant3 1019 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ ω):ω⟶𝑆)
66 simp3 1001 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐵 ∈ ω)
67 ordelsuc 4537 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
6816, 67mpan2 425 . . . . . . . . . . . . 13 (𝐵 ∈ ω → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
69683ad2ant3 1022 . . . . . . . . . . . 12 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω))
7066, 69mpbid 147 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ⊆ ω)
71 fssres2 5431 . . . . . . . . . . 11 (((recs(𝐺) ↾ ω):ω⟶𝑆 ∧ suc 𝐵 ⊆ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
7265, 70, 71syl2anc 411 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆)
73 simp1 999 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆)
7473, 25sylib 122 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ∀𝑤𝑆 (𝐹𝑤) ∈ 𝑆)
75 simp2 1000 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → 𝐴𝑆)
7659, 72, 74, 75frecabcl 6452 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆)
77 dmeq 4862 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵))
7877eqeq1d 2202 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚))
79 fveq1 5553 . . . . . . . . . . . . . . . 16 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚))
8079fveq2d 5558 . . . . . . . . . . . . . . 15 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))
8180eleq2d 2263 . . . . . . . . . . . . . 14 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))
8278, 81anbi12d 473 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8382rexbidv 2495 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
8477eqeq1d 2202 . . . . . . . . . . . . 13 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅))
8584anbi1d 465 . . . . . . . . . . . 12 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
8683, 85orbi12d 794 . . . . . . . . . . 11 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
8786abbidv 2311 . . . . . . . . . 10 (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8887, 2fvmptg 5633 . . . . . . . . 9 (((recs(𝐺) ↾ suc 𝐵) ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))} ∈ 𝑆) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
8961, 76, 88syl2anc 411 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9056, 89eqtrd 2226 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))})
9190abeq2d 2306 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
92 fdm 5409 . . . . . . . . . . . 12 ((recs(𝐺) ↾ suc 𝐵):suc 𝐵𝑆 → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
9372, 92syl 14 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵)
94 peano3 4628 . . . . . . . . . . . 12 (𝐵 ∈ ω → suc 𝐵 ≠ ∅)
95943ad2ant3 1022 . . . . . . . . . . 11 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → suc 𝐵 ≠ ∅)
9693, 95eqnetrd 2388 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅)
9796neneqd 2385 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ dom (recs(𝐺) ↾ suc 𝐵) = ∅)
9897intnanrd 933 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))
99 biorf 745 . . . . . . . 8 (¬ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
10098, 99syl 14 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))))
101 orcom 729 . . . . . . 7 (((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴)))
102100, 101bitrdi 196 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥𝐴))))
10393eqeq1d 2202 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚))
104 vex 2763 . . . . . . . . . . . 12 𝑚 ∈ V
105 suc11g 4589 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
106104, 105mpan2 425 . . . . . . . . . . 11 (𝐵 ∈ ω → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
1071063ad2ant3 1022 . . . . . . . . . 10 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚𝐵 = 𝑚))
108103, 107bitrd 188 . . . . . . . . 9 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝐵 = 𝑚))
109 eqcom 2195 . . . . . . . . 9 (𝐵 = 𝑚𝑚 = 𝐵)
110108, 109bitrdi 196 . . . . . . . 8 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑚 = 𝐵))
111110anbi1d 465 . . . . . . 7 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
112111rexbidv 2495 . . . . . 6 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
11391, 102, 1123bitr2d 216 . . . . 5 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))
114 fveq2 5554 . . . . . . . 8 (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵))
115114fveq2d 5558 . . . . . . 7 (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
116115eleq2d 2263 . . . . . 6 (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
117116ceqsrexbv 2891 . . . . 5 (∃𝑚 ∈ ω (𝑚 = 𝐵𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
118113, 117bitrdi 196 . . . 4 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))))
1191183anibar 1167 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))
120119eqrdv 2191 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))
121 sucidg 4447 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵)
122 fvres 5578 . . . . . 6 (𝐵 ∈ suc 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
123121, 122syl 14 . . . . 5 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵))
1246fveq1i 5555 . . . . . 6 (frec(𝐹, 𝐴)‘𝐵) = ((recs(𝐺) ↾ ω)‘𝐵)
125 fvres 5578 . . . . . 6 (𝐵 ∈ ω → ((recs(𝐺) ↾ ω)‘𝐵) = (recs(𝐺)‘𝐵))
126124, 125eqtrid 2238 . . . . 5 (𝐵 ∈ ω → (frec(𝐹, 𝐴)‘𝐵) = (recs(𝐺)‘𝐵))
127123, 126eqtr4d 2229 . . . 4 (𝐵 ∈ ω → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
1281273ad2ant3 1022 . . 3 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵))
129128fveq2d 5558 . 2 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
130120, 129eqtrd 2226 1 ((∀𝑧𝑆 (𝐹𝑧) ∈ 𝑆𝐴𝑆𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2164  {cab 2179  wne 2364  wral 2472  wrex 2473  Vcvv 2760  wss 3153  c0 3446   cuni 3835  cmpt 4090  Ord word 4393  Lim wlim 4395  suc csuc 4396  ωcom 4622  dom cdm 4659  cres 4661  Fun wfun 5248  wf 5250  cfv 5254  recscrecs 6357  freccfrec 6443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358  df-frec 6444
This theorem is referenced by:  frecsuc  6460
  Copyright terms: Public domain W3C validator