| Step | Hyp | Ref
| Expression |
| 1 | | df-frec 6458 |
. . . . . . . . . . . . 13
⊢
frec(𝐹, 𝐴) = (recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
| 2 | | frecsuclem.g |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 3 | | recseq 6373 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) → recs(𝐺) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}))) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
recs(𝐺) =
recs((𝑔 ∈ V ↦
{𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) |
| 5 | 4 | reseq1i 4943 |
. . . . . . . . . . . . 13
⊢
(recs(𝐺) ↾
ω) = (recs((𝑔 ∈
V ↦ {𝑥 ∣
(∃𝑚 ∈ ω
(dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) ↾ ω) |
| 6 | 1, 5 | eqtr4i 2220 |
. . . . . . . . . . . 12
⊢
frec(𝐹, 𝐴) = (recs(𝐺) ↾ ω) |
| 7 | 6 | fveq1i 5562 |
. . . . . . . . . . 11
⊢
(frec(𝐹, 𝐴)‘suc 𝐵) = ((recs(𝐺) ↾ ω)‘suc 𝐵) |
| 8 | | peano2 4632 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
| 9 | | fvres 5585 |
. . . . . . . . . . . 12
⊢ (suc
𝐵 ∈ ω →
((recs(𝐺) ↾
ω)‘suc 𝐵) =
(recs(𝐺)‘suc 𝐵)) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ω →
((recs(𝐺) ↾
ω)‘suc 𝐵) =
(recs(𝐺)‘suc 𝐵)) |
| 11 | 7, 10 | eqtrid 2241 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ω →
(frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵)) |
| 12 | 11 | 3ad2ant3 1022 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (recs(𝐺)‘suc 𝐵)) |
| 13 | | eqid 2196 |
. . . . . . . . . . 11
⊢
recs(𝐺) = recs(𝐺) |
| 14 | 2 | funmpt2 5298 |
. . . . . . . . . . . 12
⊢ Fun 𝐺 |
| 15 | 14 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → Fun 𝐺) |
| 16 | | ordom 4644 |
. . . . . . . . . . . 12
⊢ Ord
ω |
| 17 | 16 | a1i 9 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → Ord
ω) |
| 18 | | vex 2766 |
. . . . . . . . . . . . . 14
⊢ 𝑓 ∈ V |
| 19 | 18 | a1i 9 |
. . . . . . . . . . . . 13
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑓 ∈ V) |
| 20 | | simp2 1000 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑦 ∈ ω) |
| 21 | | simp3 1001 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝑓:𝑦⟶𝑆) |
| 22 | | simp11 1029 |
. . . . . . . . . . . . . . 15
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆) |
| 23 | | fveq2 5561 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 24 | 23 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ∈ 𝑆 ↔ (𝐹‘𝑤) ∈ 𝑆)) |
| 25 | 24 | cbvralv 2729 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ↔ ∀𝑤 ∈ 𝑆 (𝐹‘𝑤) ∈ 𝑆) |
| 26 | 22, 25 | sylib 122 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → ∀𝑤 ∈ 𝑆 (𝐹‘𝑤) ∈ 𝑆) |
| 27 | | simp12 1030 |
. . . . . . . . . . . . . 14
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → 𝐴 ∈ 𝑆) |
| 28 | 20, 21, 26, 27 | frecabcl 6466 |
. . . . . . . . . . . . 13
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) |
| 29 | | dmeq 4867 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓) |
| 30 | 29 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑓 → (dom 𝑔 = suc 𝑚 ↔ dom 𝑓 = suc 𝑚)) |
| 31 | | fveq1 5560 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑓 → (𝑔‘𝑚) = (𝑓‘𝑚)) |
| 32 | 31 | fveq2d 5565 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑓 → (𝐹‘(𝑔‘𝑚)) = (𝐹‘(𝑓‘𝑚))) |
| 33 | 32 | eleq2d 2266 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑓 → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘(𝑓‘𝑚)))) |
| 34 | 30, 33 | anbi12d 473 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) |
| 35 | 34 | rexbidv 2498 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))))) |
| 36 | 29 | eqeq1d 2205 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑓 → (dom 𝑔 = ∅ ↔ dom 𝑓 = ∅)) |
| 37 | 36 | anbi1d 465 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 38 | 35, 37 | orbi12d 794 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 39 | 38 | abbidv 2314 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 40 | 39, 2 | fvmptg 5640 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ V ∧ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) → (𝐺‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 41 | 19, 28, 40 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → (𝐺‘𝑓) = {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑓 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑓‘𝑚))) ∨ (dom 𝑓 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 42 | 41, 28 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝑓:𝑦⟶𝑆) → (𝐺‘𝑓) ∈ 𝑆) |
| 43 | | limom 4651 |
. . . . . . . . . . . . . . 15
⊢ Lim
ω |
| 44 | | limuni 4432 |
. . . . . . . . . . . . . . 15
⊢ (Lim
ω → ω = ∪ ω) |
| 45 | 43, 44 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ω =
∪ ω |
| 46 | 45 | eleq2i 2263 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω ↔ 𝑦 ∈ ∪ ω) |
| 47 | | peano2 4632 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 48 | 46, 47 | sylbir 135 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ∪ ω → suc 𝑦 ∈ ω) |
| 49 | 48 | adantl 277 |
. . . . . . . . . . 11
⊢
(((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) ∧ 𝑦 ∈ ∪ ω)
→ suc 𝑦 ∈
ω) |
| 50 | 45 | eleq2i 2263 |
. . . . . . . . . . . . 13
⊢ (suc
𝐵 ∈ ω ↔ suc
𝐵 ∈ ∪ ω) |
| 51 | 8, 50 | sylib 122 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ω → suc 𝐵 ∈ ∪ ω) |
| 52 | 51 | 3ad2ant3 1022 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ∪ ω) |
| 53 | 13, 15, 17, 42, 49, 52 | tfrcldm 6430 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ dom recs(𝐺)) |
| 54 | 13 | tfr2a 6388 |
. . . . . . . . . 10
⊢ (suc
𝐵 ∈ dom recs(𝐺) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵))) |
| 55 | 53, 54 | syl 14 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (recs(𝐺)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵))) |
| 56 | 12, 55 | eqtrd 2229 |
. . . . . . . 8
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐺‘(recs(𝐺) ↾ suc 𝐵))) |
| 57 | | tfrfun 6387 |
. . . . . . . . . . 11
⊢ Fun
recs(𝐺) |
| 58 | 57 | a1i 9 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → Fun recs(𝐺)) |
| 59 | 8 | 3ad2ant3 1022 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → suc 𝐵 ∈
ω) |
| 60 | | resfunexg 5786 |
. . . . . . . . . 10
⊢ ((Fun
recs(𝐺) ∧ suc 𝐵 ∈ ω) →
(recs(𝐺) ↾ suc 𝐵) ∈ V) |
| 61 | 58, 59, 60 | syl2anc 411 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵) ∈ V) |
| 62 | | frecfcl 6472 |
. . . . . . . . . . . . 13
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → frec(𝐹, 𝐴):ω⟶𝑆) |
| 63 | 6 | feq1i 5403 |
. . . . . . . . . . . . 13
⊢
(frec(𝐹, 𝐴):ω⟶𝑆 ↔ (recs(𝐺) ↾ ω):ω⟶𝑆) |
| 64 | 62, 63 | sylib 122 |
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (recs(𝐺) ↾ ω):ω⟶𝑆) |
| 65 | 64 | 3adant3 1019 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (recs(𝐺) ↾
ω):ω⟶𝑆) |
| 66 | | simp3 1001 |
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω) |
| 67 | | ordelsuc 4542 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ω ∧ Ord
ω) → (𝐵 ∈
ω ↔ suc 𝐵
⊆ ω)) |
| 68 | 16, 67 | mpan2 425 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ω → (𝐵 ∈ ω ↔ suc 𝐵 ⊆
ω)) |
| 69 | 68 | 3ad2ant3 1022 |
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝐵 ∈ ω ↔ suc 𝐵 ⊆ ω)) |
| 70 | 66, 69 | mpbid 147 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → suc 𝐵 ⊆
ω) |
| 71 | | fssres2 5438 |
. . . . . . . . . . 11
⊢
(((recs(𝐺) ↾
ω):ω⟶𝑆
∧ suc 𝐵 ⊆
ω) → (recs(𝐺)
↾ suc 𝐵):suc 𝐵⟶𝑆) |
| 72 | 65, 70, 71 | syl2anc 411 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (recs(𝐺) ↾ suc 𝐵):suc 𝐵⟶𝑆) |
| 73 | | simp1 999 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ∀𝑧 ∈ 𝑆 (𝐹‘𝑧) ∈ 𝑆) |
| 74 | 73, 25 | sylib 122 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ∀𝑤 ∈ 𝑆 (𝐹‘𝑤) ∈ 𝑆) |
| 75 | | simp2 1000 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → 𝐴 ∈ 𝑆) |
| 76 | 59, 72, 74, 75 | frecabcl 6466 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) |
| 77 | | dmeq 4867 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → dom 𝑔 = dom (recs(𝐺) ↾ suc 𝐵)) |
| 78 | 77 | eqeq1d 2205 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = suc 𝑚 ↔ dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚)) |
| 79 | | fveq1 5560 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑔‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝑚)) |
| 80 | 79 | fveq2d 5565 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝐹‘(𝑔‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) |
| 81 | 80 | eleq2d 2266 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (𝑥 ∈ (𝐹‘(𝑔‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) |
| 82 | 78, 81 | anbi12d 473 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))) |
| 83 | 82 | rexbidv 2498 |
. . . . . . . . . . . 12
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ↔ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))) |
| 84 | 77 | eqeq1d 2205 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → (dom 𝑔 = ∅ ↔ dom (recs(𝐺) ↾ suc 𝐵) = ∅)) |
| 85 | 84 | anbi1d 465 |
. . . . . . . . . . . 12
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴) ↔ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 86 | 83, 85 | orbi12d 794 |
. . . . . . . . . . 11
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → ((∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴)) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 87 | 86 | abbidv 2314 |
. . . . . . . . . 10
⊢ (𝑔 = (recs(𝐺) ↾ suc 𝐵) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 88 | 87, 2 | fvmptg 5640 |
. . . . . . . . 9
⊢
(((recs(𝐺) ↾
suc 𝐵) ∈ V ∧
{𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ 𝑆) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 89 | 61, 76, 88 | syl2anc 411 |
. . . . . . . 8
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝐺‘(recs(𝐺) ↾ suc 𝐵)) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 90 | 56, 89 | eqtrd 2229 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = {𝑥 ∣ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| 91 | 90 | abeq2d 2309 |
. . . . . 6
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 92 | | fdm 5416 |
. . . . . . . . . . . 12
⊢
((recs(𝐺) ↾
suc 𝐵):suc 𝐵⟶𝑆 → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵) |
| 93 | 72, 92 | syl 14 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) = suc 𝐵) |
| 94 | | peano3 4633 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ω → suc 𝐵 ≠ ∅) |
| 95 | 94 | 3ad2ant3 1022 |
. . . . . . . . . . 11
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → suc 𝐵 ≠ ∅) |
| 96 | 93, 95 | eqnetrd 2391 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → dom (recs(𝐺) ↾ suc 𝐵) ≠ ∅) |
| 97 | 96 | neneqd 2388 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ¬ dom
(recs(𝐺) ↾ suc 𝐵) = ∅) |
| 98 | 97 | intnanrd 933 |
. . . . . . . 8
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ¬ (dom
(recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴)) |
| 99 | | biorf 745 |
. . . . . . . 8
⊢ (¬
(dom (recs(𝐺) ↾ suc
𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))) |
| 100 | 98, 99 | syl 14 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ((dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))))) |
| 101 | | orcom 729 |
. . . . . . 7
⊢ (((dom
(recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴) ∨ ∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴))) |
| 102 | 100, 101 | bitrdi 196 |
. . . . . 6
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ∨ (dom (recs(𝐺) ↾ suc 𝐵) = ∅ ∧ 𝑥 ∈ 𝐴)))) |
| 103 | 93 | eqeq1d 2205 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ suc 𝐵 = suc 𝑚)) |
| 104 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑚 ∈ V |
| 105 | | suc11g 4594 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ω ∧ 𝑚 ∈ V) → (suc 𝐵 = suc 𝑚 ↔ 𝐵 = 𝑚)) |
| 106 | 104, 105 | mpan2 425 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ω → (suc
𝐵 = suc 𝑚 ↔ 𝐵 = 𝑚)) |
| 107 | 106 | 3ad2ant3 1022 |
. . . . . . . . . 10
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (suc 𝐵 = suc 𝑚 ↔ 𝐵 = 𝑚)) |
| 108 | 103, 107 | bitrd 188 |
. . . . . . . . 9
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ 𝐵 = 𝑚)) |
| 109 | | eqcom 2198 |
. . . . . . . . 9
⊢ (𝐵 = 𝑚 ↔ 𝑚 = 𝐵) |
| 110 | 108, 109 | bitrdi 196 |
. . . . . . . 8
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ↔ 𝑚 = 𝐵)) |
| 111 | 110 | anbi1d 465 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ((dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝑚 = 𝐵 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))) |
| 112 | 111 | rexbidv 2498 |
. . . . . 6
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (∃𝑚 ∈ ω (dom (recs(𝐺) ↾ suc 𝐵) = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))) |
| 113 | 91, 102, 112 | 3bitr2d 216 |
. . . . 5
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ ∃𝑚 ∈ ω (𝑚 = 𝐵 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))))) |
| 114 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑚 = 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝑚) = ((recs(𝐺) ↾ suc 𝐵)‘𝐵)) |
| 115 | 114 | fveq2d 5565 |
. . . . . . 7
⊢ (𝑚 = 𝐵 → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))) |
| 116 | 115 | eleq2d 2266 |
. . . . . 6
⊢ (𝑚 = 𝐵 → (𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚)) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))) |
| 117 | 116 | ceqsrexbv 2895 |
. . . . 5
⊢
(∃𝑚 ∈
ω (𝑚 = 𝐵 ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝑚))) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))) |
| 118 | 113, 117 | bitrdi 196 |
. . . 4
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ (𝐵 ∈ ω ∧ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))))) |
| 119 | 118 | 3anibar 1167 |
. . 3
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝑥 ∈ (frec(𝐹, 𝐴)‘suc 𝐵) ↔ 𝑥 ∈ (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)))) |
| 120 | 119 | eqrdv 2194 |
. 2
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵))) |
| 121 | | sucidg 4452 |
. . . . . 6
⊢ (𝐵 ∈ ω → 𝐵 ∈ suc 𝐵) |
| 122 | | fvres 5585 |
. . . . . 6
⊢ (𝐵 ∈ suc 𝐵 → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵)) |
| 123 | 121, 122 | syl 14 |
. . . . 5
⊢ (𝐵 ∈ ω →
((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (recs(𝐺)‘𝐵)) |
| 124 | 6 | fveq1i 5562 |
. . . . . 6
⊢
(frec(𝐹, 𝐴)‘𝐵) = ((recs(𝐺) ↾ ω)‘𝐵) |
| 125 | | fvres 5585 |
. . . . . 6
⊢ (𝐵 ∈ ω →
((recs(𝐺) ↾
ω)‘𝐵) =
(recs(𝐺)‘𝐵)) |
| 126 | 124, 125 | eqtrid 2241 |
. . . . 5
⊢ (𝐵 ∈ ω →
(frec(𝐹, 𝐴)‘𝐵) = (recs(𝐺)‘𝐵)) |
| 127 | 123, 126 | eqtr4d 2232 |
. . . 4
⊢ (𝐵 ∈ ω →
((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵)) |
| 128 | 127 | 3ad2ant3 1022 |
. . 3
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → ((recs(𝐺) ↾ suc 𝐵)‘𝐵) = (frec(𝐹, 𝐴)‘𝐵)) |
| 129 | 128 | fveq2d 5565 |
. 2
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (𝐹‘((recs(𝐺) ↾ suc 𝐵)‘𝐵)) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵))) |
| 130 | 120, 129 | eqtrd 2229 |
1
⊢
((∀𝑧 ∈
𝑆 (𝐹‘𝑧) ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ ω) → (frec(𝐹, 𝐴)‘suc 𝐵) = (𝐹‘(frec(𝐹, 𝐴)‘𝐵))) |