Proof of Theorem pythagtriplem14
Step | Hyp | Ref
| Expression |
1 | | pythagtriplem13.1 |
. . 3
⊢ 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) / 2) |
2 | 1 | oveq1i 5851 |
. 2
⊢ (𝑁↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) /
2)↑2) |
3 | | simp13 1019 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ) |
4 | | simp12 1018 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ) |
5 | 3, 4 | nnaddcld 8901 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℕ) |
6 | 5 | nnrpd 9626 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈
ℝ+) |
7 | 6 | rpsqrtcld 11096 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈
ℝ+) |
8 | 7 | rpcnd 9630 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℂ) |
9 | 3 | nnred 8866 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℝ) |
10 | 4 | nnred 8866 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℝ) |
11 | 9, 10 | resubcld 8275 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
12 | | pythagtriplem10 12197 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 − 𝐵)) |
13 | 12 | 3adant3 1007 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 − 𝐵)) |
14 | 11, 13 | elrpd 9625 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈
ℝ+) |
15 | 14 | rpsqrtcld 11096 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈
ℝ+) |
16 | 15 | rpcnd 9630 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 − 𝐵)) ∈ ℂ) |
17 | 8, 16 | subcld 8205 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵))) ∈ ℂ) |
18 | | 2cn 8924 |
. . . . 5
⊢ 2 ∈
ℂ |
19 | 18 | a1i 9 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∈
ℂ) |
20 | | 2ap0 8946 |
. . . . 5
⊢ 2 #
0 |
21 | 20 | a1i 9 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 #
0) |
22 | 17, 19, 21 | sqdivapd 10597 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) /
(2↑2))) |
23 | 18 | sqvali 10530 |
. . . . 5
⊢
(2↑2) = (2 · 2) |
24 | 23 | oveq2i 5852 |
. . . 4
⊢
((((√‘(𝐶
+ 𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) |
25 | 17 | sqcld 10582 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) ∈ ℂ) |
26 | 25, 19, 19, 21, 21 | divdivap1d 8714 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2))) |
27 | | binom2sub 10564 |
. . . . . . . . . 10
⊢
(((√‘(𝐶
+ 𝐵)) ∈ ℂ ∧
(√‘(𝐶 −
𝐵)) ∈ ℂ) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
28 | 8, 16, 27 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = ((((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2))) |
29 | | nnre 8860 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
30 | | nnre 8860 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
31 | | readdcl 7875 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 + 𝐵) ∈ ℝ) |
32 | 29, 30, 31 | syl2anr 288 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
33 | 32 | 3adant1 1005 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ) |
34 | 33 | 3ad2ant1 1008 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ) |
35 | 34 | recnd 7923 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℂ) |
36 | | resubcl 8158 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 − 𝐵) ∈ ℝ) |
37 | 29, 30, 36 | syl2anr 288 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
38 | 37 | 3adant1 1005 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐵) ∈ ℝ) |
39 | 38 | 3ad2ant1 1008 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℝ) |
40 | 39 | recnd 7923 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐵) ∈ ℂ) |
41 | 8, 16 | mulcld 7915 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) ∈ ℂ) |
42 | | mulcl 7876 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) ∈ ℂ) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
43 | 18, 41, 42 | sylancr 411 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) ∈
ℂ) |
44 | 35, 40, 43 | addsubd 8226 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
45 | 3 | nncnd 8867 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℂ) |
46 | | simp11 1017 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℕ) |
47 | 46 | nncnd 8867 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℂ) |
48 | | subdi 8279 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℂ ∧ 𝐶
∈ ℂ ∧ 𝐴
∈ ℂ) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
49 | 18, 45, 47, 48 | mp3an2i 1332 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = ((2 · 𝐶) − (2 · 𝐴))) |
50 | | nncn 8861 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
51 | | nncn 8861 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
52 | | ppncan 8136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
53 | 52 | 3anidm13 1286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (𝐶 + 𝐶)) |
54 | | 2times 8981 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) = (𝐶 + 𝐶)) |
55 | 54 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· 𝐶) = (𝐶 + 𝐶)) |
56 | 53, 55 | eqtr4d 2201 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
57 | 50, 51, 56 | syl2anr 288 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
58 | 57 | 3adant1 1005 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
59 | 58 | 3ad2ant1 1008 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) + (𝐶 − 𝐵)) = (2 · 𝐶)) |
60 | 4 | nncnd 8867 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℂ) |
61 | | subsq 10557 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
62 | 45, 60, 61 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = ((𝐶 + 𝐵) · (𝐶 − 𝐵))) |
63 | | oveq1 5848 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
64 | 63 | 3ad2ant2 1009 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = ((𝐶↑2) − (𝐵↑2))) |
65 | | nncn 8861 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
66 | 65 | sqcld 10582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℂ) |
67 | 66 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℂ) |
68 | 51 | sqcld 10582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℂ) |
69 | 68 | 3ad2ant2 1009 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℂ) |
70 | 67, 69 | pncand 8206 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
71 | 70 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐴↑2) + (𝐵↑2)) − (𝐵↑2)) = (𝐴↑2)) |
72 | 64, 71 | eqtr3d 2200 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶↑2) − (𝐵↑2)) = (𝐴↑2)) |
73 | 62, 72 | eqtr3d 2200 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶 + 𝐵) · (𝐶 − 𝐵)) = (𝐴↑2)) |
74 | 73 | fveq2d 5489 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = (√‘(𝐴↑2))) |
75 | 29 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
76 | 30 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
77 | | nngt0 8878 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
78 | 77 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
79 | | nngt0 8878 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
80 | 79 | adantr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
81 | 75, 76, 78, 80 | addgt0d 8415 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 + 𝐵)) |
82 | | 0re 7895 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
83 | | ltle 7982 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ (𝐶 +
𝐵) ∈ ℝ) →
(0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
84 | 82, 83 | mpan 421 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵))) |
85 | 32, 81, 84 | sylc 62 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
86 | 85 | 3adant1 1005 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
(𝐶 + 𝐵)) |
87 | 86 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵)) |
88 | | ltle 7982 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ (𝐶
− 𝐵) ∈ ℝ)
→ (0 < (𝐶 −
𝐵) → 0 ≤ (𝐶 − 𝐵))) |
89 | 82, 88 | mpan 421 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 − 𝐵) ∈ ℝ → (0 < (𝐶 − 𝐵) → 0 ≤ (𝐶 − 𝐵))) |
90 | 39, 13, 89 | sylc 62 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 − 𝐵)) |
91 | 34, 87, 39, 90 | sqrtmuld 11107 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘((𝐶 + 𝐵) · (𝐶 − 𝐵))) = ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))) |
92 | | nnre 8860 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
93 | 92 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℝ) |
94 | 93 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℝ) |
95 | | nnnn0 9117 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
96 | 95 | nn0ge0d 9166 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ ℕ → 0 ≤
𝐴) |
97 | 96 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 ≤
𝐴) |
98 | 97 | 3ad2ant1 1008 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ 𝐴) |
99 | 94, 98 | sqrtsqd 11103 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐴↑2)) = 𝐴) |
100 | 74, 91, 99 | 3eqtr3d 2206 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))) = 𝐴) |
101 | 100 | oveq2d 5857 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))) = (2 · 𝐴)) |
102 | 59, 101 | oveq12d 5859 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((2 · 𝐶) − (2 · 𝐴))) |
103 | 49, 102 | eqtr4d 2201 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 · (𝐶 − 𝐴)) = (((𝐶 + 𝐵) + (𝐶 − 𝐵)) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵)))))) |
104 | | resqrtth 10969 |
. . . . . . . . . . . . 13
⊢ (((𝐶 + 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 + 𝐵)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
105 | 34, 87, 104 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵))↑2) = (𝐶 + 𝐵)) |
106 | 105 | oveq1d 5856 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵))↑2) − (2 ·
((√‘(𝐶 + 𝐵)) ·
(√‘(𝐶 −
𝐵))))) = ((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵)))))) |
107 | | resqrtth 10969 |
. . . . . . . . . . . 12
⊢ (((𝐶 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐶 − 𝐵)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
108 | 39, 90, 107 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 − 𝐵))↑2) = (𝐶 − 𝐵)) |
109 | 106, 108 | oveq12d 5859 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (((𝐶 + 𝐵) − (2 · ((√‘(𝐶 + 𝐵)) · (√‘(𝐶 − 𝐵))))) + (𝐶 − 𝐵))) |
110 | 44, 103, 109 | 3eqtr4rd 2209 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵))↑2) − (2
· ((√‘(𝐶
+ 𝐵)) ·
(√‘(𝐶 −
𝐵))))) +
((√‘(𝐶 −
𝐵))↑2)) = (2 ·
(𝐶 − 𝐴))) |
111 | 28, 110 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((√‘(𝐶 + 𝐵)) − (√‘(𝐶 − 𝐵)))↑2) = (2 · (𝐶 − 𝐴))) |
112 | 111 | oveq1d 5856 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = ((2
· (𝐶 − 𝐴)) / 2)) |
113 | | subcl 8093 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐶 − 𝐴) ∈ ℂ) |
114 | 50, 65, 113 | syl2anr 288 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
115 | 114 | 3adant2 1006 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 − 𝐴) ∈ ℂ) |
116 | 115 | 3ad2ant1 1008 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 − 𝐴) ∈ ℂ) |
117 | 116, 19, 21 | divcanap3d 8687 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 · (𝐶 − 𝐴)) / 2) = (𝐶 − 𝐴)) |
118 | 112, 117 | eqtrd 2198 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) = (𝐶 − 𝐴)) |
119 | 118 | oveq1d 5856 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
(((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / 2) / 2) =
((𝐶 − 𝐴) / 2)) |
120 | 26, 119 | eqtr3d 2200 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2 ·
2)) = ((𝐶 − 𝐴) / 2)) |
121 | 24, 120 | syl5eq 2210 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵)))↑2) / (2↑2))
= ((𝐶 − 𝐴) / 2)) |
122 | 22, 121 | eqtrd 2198 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) →
((((√‘(𝐶 +
𝐵)) −
(√‘(𝐶 −
𝐵))) / 2)↑2) = ((𝐶 − 𝐴) / 2)) |
123 | 2, 122 | syl5eq 2210 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑁↑2) = ((𝐶 − 𝐴) / 2)) |