Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
2 | 1 | 3ad2ant3 1010 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl3r 1043 simpr3r 1049 simp13r 1103 simp23r 1109 simp33r 1115 issod 4297 tfisi 4564 fvun1 5552 f1oiso2 5795 tfrlem5 6282 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 ecopovtrn 6598 ecopovtrng 6601 addassnqg 7323 ltsonq 7339 ltanqg 7341 ltmnqg 7342 addassnq0 7403 mulasssrg 7699 distrsrg 7700 lttrsr 7703 ltsosr 7705 ltasrg 7711 mulextsr1lem 7721 mulextsr1 7722 axmulass 7814 axdistr 7815 reapmul1 8493 mulcanap 8562 mulcanap2 8563 divassap 8586 divdirap 8593 div11ap 8596 apmul1 8684 ltdiv1 8763 ltmuldiv 8769 ledivmul 8772 lemuldiv 8776 lediv2 8786 ltdiv23 8787 lediv23 8788 xaddass2 9806 xlt2add 9816 modqdi 10327 expaddzap 10499 expmulzap 10501 leisorel 10750 resqrtcl 10971 xrbdtri 11217 dvdsgcd 11945 rpexp12i 12087 pythagtriplem4 12200 pythagtriplem11 12206 pythagtriplem13 12208 pcpremul 12225 pceu 12227 pcqmul 12235 pcqdiv 12239 psmetlecl 12974 xmetlecl 13007 xblcntrps 13053 xblcntr 13054 |
Copyright terms: Public domain | W3C validator |