| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp3r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simpl3r 1055 simpr3r 1061 simp13r 1115 simp23r 1121 simp33r 1127 issod 4354 tfisi 4623 fvun1 5627 f1oiso2 5874 tfrlem5 6372 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 ecopovtrn 6691 ecopovtrng 6694 dftap2 7318 addassnqg 7449 ltsonq 7465 ltanqg 7467 ltmnqg 7468 addassnq0 7529 mulasssrg 7825 distrsrg 7826 lttrsr 7829 ltsosr 7831 ltasrg 7837 mulextsr1lem 7847 mulextsr1 7848 axmulass 7940 axdistr 7941 reapmul1 8622 mulcanap 8692 mulcanap2 8693 divassap 8717 divdirap 8724 div11ap 8727 apmul1 8815 ltdiv1 8895 ltmuldiv 8901 ledivmul 8904 lemuldiv 8908 lediv2 8918 ltdiv23 8919 lediv23 8920 xaddass2 9945 xlt2add 9955 modqdi 10484 expaddzap 10675 expmulzap 10677 leisorel 10929 resqrtcl 11194 xrbdtri 11441 dvdsgcd 12179 rpexp12i 12323 pythagtriplem4 12437 pythagtriplem11 12443 pythagtriplem13 12445 pcpremul 12462 pceu 12464 pcqmul 12472 pcqdiv 12476 f1ocpbllem 12953 ercpbl 12974 erlecpbl 12975 cmn4 13435 ablsub4 13443 abladdsub4 13444 lidlsubcl 14043 psmetlecl 14570 xmetlecl 14603 xblcntrps 14649 xblcntr 14650 | 
| Copyright terms: Public domain | W3C validator |