| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | 3ad2ant3 1044 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl3r 1077 simpr3r 1083 simp13r 1137 simp23r 1143 simp33r 1149 issod 4407 tfisi 4676 fvun1 5693 f1oiso2 5944 tfrlem5 6450 tfr1onlembxssdm 6479 tfrcllembxssdm 6492 ecopovtrn 6769 ecopovtrng 6772 dftap2 7425 addassnqg 7557 ltsonq 7573 ltanqg 7575 ltmnqg 7576 addassnq0 7637 mulasssrg 7933 distrsrg 7934 lttrsr 7937 ltsosr 7939 ltasrg 7945 mulextsr1lem 7955 mulextsr1 7956 axmulass 8048 axdistr 8049 reapmul1 8730 mulcanap 8800 mulcanap2 8801 divassap 8825 divdirap 8832 div11ap 8835 apmul1 8923 ltdiv1 9003 ltmuldiv 9009 ledivmul 9012 lemuldiv 9016 lediv2 9026 ltdiv23 9027 lediv23 9028 xaddass2 10054 xlt2add 10064 modqdi 10601 expaddzap 10792 expmulzap 10794 leisorel 11046 resqrtcl 11526 xrbdtri 11773 dvdsgcd 12519 rpexp12i 12663 pythagtriplem4 12777 pythagtriplem11 12783 pythagtriplem13 12785 pcpremul 12802 pceu 12804 pcqmul 12812 pcqdiv 12816 f1ocpbllem 13329 ercpbl 13350 erlecpbl 13351 cmn4 13828 ablsub4 13836 abladdsub4 13837 lidlsubcl 14436 psmetlecl 14993 xmetlecl 15026 xblcntrps 15072 xblcntr 15073 |
| Copyright terms: Public domain | W3C validator |