| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | 3ad2ant3 1023 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3r 1056 simpr3r 1062 simp13r 1116 simp23r 1122 simp33r 1128 issod 4371 tfisi 4640 fvun1 5655 f1oiso2 5906 tfrlem5 6410 tfr1onlembxssdm 6439 tfrcllembxssdm 6452 ecopovtrn 6729 ecopovtrng 6732 dftap2 7376 addassnqg 7508 ltsonq 7524 ltanqg 7526 ltmnqg 7527 addassnq0 7588 mulasssrg 7884 distrsrg 7885 lttrsr 7888 ltsosr 7890 ltasrg 7896 mulextsr1lem 7906 mulextsr1 7907 axmulass 7999 axdistr 8000 reapmul1 8681 mulcanap 8751 mulcanap2 8752 divassap 8776 divdirap 8783 div11ap 8786 apmul1 8874 ltdiv1 8954 ltmuldiv 8960 ledivmul 8963 lemuldiv 8967 lediv2 8977 ltdiv23 8978 lediv23 8979 xaddass2 10005 xlt2add 10015 modqdi 10550 expaddzap 10741 expmulzap 10743 leisorel 10995 resqrtcl 11390 xrbdtri 11637 dvdsgcd 12383 rpexp12i 12527 pythagtriplem4 12641 pythagtriplem11 12647 pythagtriplem13 12649 pcpremul 12666 pceu 12668 pcqmul 12676 pcqdiv 12680 f1ocpbllem 13192 ercpbl 13213 erlecpbl 13214 cmn4 13691 ablsub4 13699 abladdsub4 13700 lidlsubcl 14299 psmetlecl 14856 xmetlecl 14889 xblcntrps 14935 xblcntr 14936 |
| Copyright terms: Public domain | W3C validator |