| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((𝜒 ∧ 𝜃) → 𝜃) | |
| 2 | 1 | 3ad2ant3 1022 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl3r 1055 simpr3r 1061 simp13r 1115 simp23r 1121 simp33r 1127 issod 4355 tfisi 4624 fvun1 5630 f1oiso2 5877 tfrlem5 6381 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 ecopovtrn 6700 ecopovtrng 6703 dftap2 7336 addassnqg 7468 ltsonq 7484 ltanqg 7486 ltmnqg 7487 addassnq0 7548 mulasssrg 7844 distrsrg 7845 lttrsr 7848 ltsosr 7850 ltasrg 7856 mulextsr1lem 7866 mulextsr1 7867 axmulass 7959 axdistr 7960 reapmul1 8641 mulcanap 8711 mulcanap2 8712 divassap 8736 divdirap 8743 div11ap 8746 apmul1 8834 ltdiv1 8914 ltmuldiv 8920 ledivmul 8923 lemuldiv 8927 lediv2 8937 ltdiv23 8938 lediv23 8939 xaddass2 9964 xlt2add 9974 modqdi 10503 expaddzap 10694 expmulzap 10696 leisorel 10948 resqrtcl 11213 xrbdtri 11460 dvdsgcd 12206 rpexp12i 12350 pythagtriplem4 12464 pythagtriplem11 12470 pythagtriplem13 12472 pcpremul 12489 pceu 12491 pcqmul 12499 pcqdiv 12503 f1ocpbllem 13014 ercpbl 13035 erlecpbl 13036 cmn4 13513 ablsub4 13521 abladdsub4 13522 lidlsubcl 14121 psmetlecl 14678 xmetlecl 14711 xblcntrps 14757 xblcntr 14758 |
| Copyright terms: Public domain | W3C validator |