ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprimeprodsq GIF version

Theorem coprimeprodsq 12695
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 9427 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 nn0z 9427 . . . . . . . 8 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
3 gcdcl 12402 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 gcd 𝐶) ∈ ℕ0)
41, 2, 3syl2an 289 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
543adant2 1019 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
653ad2ant1 1021 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℕ0)
76nn0cnd 9385 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℂ)
87sqvald 10852 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶)↑2) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
9 simp13 1032 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℕ0)
109nn0cnd 9385 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℂ)
11 nn0cn 9340 . . . . . . . . . 10 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
12113ad2ant1 1021 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
13123ad2ant1 1021 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
1410, 13mulcomd 8129 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐴) = (𝐴 · 𝐶))
15 simpl3 1005 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
1615nn0cnd 9385 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℂ)
1716sqvald 10852 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐶↑2) = (𝐶 · 𝐶))
1817eqeq1d 2216 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶 · 𝐶) = (𝐴 · 𝐵)))
1918biimp3a 1358 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐶) = (𝐴 · 𝐵))
2014, 19oveq12d 5985 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)))
21 simp11 1030 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℕ0)
2221nn0zd 9528 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℤ)
239nn0zd 9528 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℤ)
24 mulgcd 12452 . . . . . . 7 ((𝐶 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
259, 22, 23, 24syl3anc 1250 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
26 simp12 1031 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐵 ∈ ℤ)
27 mulgcd 12452 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2821, 23, 26, 27syl3anc 1250 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2920, 25, 283eqtr3d 2248 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · (𝐴 gcd 𝐶)) = (𝐴 · (𝐶 gcd 𝐵)))
3029oveq2d 5983 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))))
31 mulgcdr 12454 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐴 gcd 𝐶) ∈ ℕ0) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
3222, 23, 6, 31syl3anc 1250 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
336nn0zd 9528 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℤ)
34 gcdcl 12402 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
352, 34sylan 283 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
3635ancoms 268 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
37363adant1 1018 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
38373ad2ant1 1021 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℕ0)
3938nn0zd 9528 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℤ)
40 mulgcd 12452 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (𝐴 gcd 𝐶) ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4121, 33, 39, 40syl3anc 1250 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4230, 32, 413eqtr3d 2248 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4323ad2ant3 1023 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
44 gcdid 12422 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶 gcd 𝐶) = (abs‘𝐶))
4543, 44syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐶) = (abs‘𝐶))
4645oveq1d 5982 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = ((abs‘𝐶) gcd 𝐵))
47 simp2 1001 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
48 gcdabs1 12425 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
4943, 47, 48syl2anc 411 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
5046, 49eqtrd 2240 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
51 gcdass 12451 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5243, 43, 47, 51syl3anc 1250 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5343, 47gcdcomd 12410 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) = (𝐵 gcd 𝐶))
5450, 52, 533eqtr3d 2248 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd (𝐶 gcd 𝐵)) = (𝐵 gcd 𝐶))
5554oveq2d 5983 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))) = (𝐴 gcd (𝐵 gcd 𝐶)))
5613ad2ant1 1021 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
5737nn0zd 9528 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℤ)
58 gcdass 12451 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
5956, 43, 57, 58syl3anc 1250 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
60 gcdass 12451 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6156, 47, 43, 60syl3anc 1250 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6255, 59, 613eqtr4d 2250 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = ((𝐴 gcd 𝐵) gcd 𝐶))
6362eqeq1d 2216 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) gcd 𝐶) = 1))
6463biimpar 297 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1)
6564oveq2d 5983 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
66653adant3 1020 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
6713mulridd 8124 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴)
6866, 67eqtrd 2240 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = 𝐴)
698, 42, 683eqtrrd 2245 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 = ((𝐴 gcd 𝐶)↑2))
70693expia 1208 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2178  cfv 5290  (class class class)co 5967  cc 7958  1c1 7961   · cmul 7965  2c2 9122  0cn0 9330  cz 9407  cexp 10720  abscabs 11423   gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  coprimeprodsq2  12696  pythagtriplem6  12708
  Copyright terms: Public domain W3C validator