ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrbdtri GIF version

Theorem xrbdtri 11422
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
xrbdtri (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))

Proof of Theorem xrbdtri
StepHypRef Expression
1 simpr 110 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
2 simp1r 1024 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ≤ 𝐴)
32ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐴)
4 simplr 528 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
5 simp2r 1026 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ≤ 𝐵)
65ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝐵)
7 simpllr 534 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ)
8 simp3r 1028 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 < 𝐶)
98ad3antrrr 492 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 0 < 𝐶)
107, 9elrpd 9762 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → 𝐶 ∈ ℝ+)
11 bdtri 11386 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
121, 3, 4, 6, 10, 11syl221anc 1260 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ) ≤ (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
131, 4rexaddd 9923 . . . . . . . 8 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
1413preq1d 3702 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → {(𝐴 +𝑒 𝐵), 𝐶} = {(𝐴 + 𝐵), 𝐶})
1514infeq1d 7073 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = inf({(𝐴 + 𝐵), 𝐶}, ℝ*, < ))
161, 4readdcld 8051 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
17 xrminrecl 11419 . . . . . . 7 (((𝐴 + 𝐵) ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ*, < ) = inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ))
1816, 7, 17syl2anc 411 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({(𝐴 + 𝐵), 𝐶}, ℝ*, < ) = inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ))
1915, 18eqtrd 2226 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = inf({(𝐴 + 𝐵), 𝐶}, ℝ, < ))
20 xrminrecl 11419 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ*, < ) = inf({𝐴, 𝐶}, ℝ, < ))
211, 7, 20syl2anc 411 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ*, < ) = inf({𝐴, 𝐶}, ℝ, < ))
22 xrminrecl 11419 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ*, < ) = inf({𝐵, 𝐶}, ℝ, < ))
234, 7, 22syl2anc 411 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ*, < ) = inf({𝐵, 𝐶}, ℝ, < ))
2421, 23oveq12d 5937 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (inf({𝐴, 𝐶}, ℝ, < ) +𝑒 inf({𝐵, 𝐶}, ℝ, < )))
25 mincl 11377 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) ∈ ℝ)
261, 7, 25syl2anc 411 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({𝐴, 𝐶}, ℝ, < ) ∈ ℝ)
27 mincl 11377 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) ∈ ℝ)
284, 7, 27syl2anc 411 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({𝐵, 𝐶}, ℝ, < ) ∈ ℝ)
2926, 28rexaddd 9923 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (inf({𝐴, 𝐶}, ℝ, < ) +𝑒 inf({𝐵, 𝐶}, ℝ, < )) = (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
3024, 29eqtrd 2226 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (inf({𝐴, 𝐶}, ℝ, < ) + inf({𝐵, 𝐶}, ℝ, < )))
3112, 19, 303brtr4d 4062 . . . 4 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ∈ ℝ) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
32 simp3l 1027 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐶 ∈ ℝ*)
3332xaddid1d 9933 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐶 +𝑒 0) = 𝐶)
3432xrleidd 9870 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐶𝐶)
35 0xr 8068 . . . . . . . . . . 11 0 ∈ ℝ*
3635a1i 9 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ∈ ℝ*)
3736, 32, 8xrltled 9868 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ≤ 𝐶)
38 simp2l 1025 . . . . . . . . . 10 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐵 ∈ ℝ*)
39 xrlemininf 11417 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (0 ≤ 𝐵 ∧ 0 ≤ 𝐶)))
4036, 38, 32, 39syl3anc 1249 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (0 ≤ inf({𝐵, 𝐶}, ℝ*, < ) ↔ (0 ≤ 𝐵 ∧ 0 ≤ 𝐶)))
415, 37, 40mpbir2and 946 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ≤ inf({𝐵, 𝐶}, ℝ*, < ))
42 xrmincl 11412 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
4338, 32, 42syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)
44 xle2add 9948 . . . . . . . . 9 (((𝐶 ∈ ℝ* ∧ 0 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ inf({𝐵, 𝐶}, ℝ*, < ) ∈ ℝ*)) → ((𝐶𝐶 ∧ 0 ≤ inf({𝐵, 𝐶}, ℝ*, < )) → (𝐶 +𝑒 0) ≤ (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < ))))
4532, 36, 32, 43, 44syl22anc 1250 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐶𝐶 ∧ 0 ≤ inf({𝐵, 𝐶}, ℝ*, < )) → (𝐶 +𝑒 0) ≤ (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < ))))
4634, 41, 45mp2and 433 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐶 +𝑒 0) ≤ (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
4733, 46eqbrtrrd 4054 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐶 ≤ (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
4847ad3antrrr 492 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ≤ (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
49 simp1l 1023 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐴 ∈ ℝ*)
5049, 38xaddcld 9953 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
5150ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
5232ad3antrrr 492 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ∈ ℝ*)
53 pnfge 9858 . . . . . . . 8 (𝐶 ∈ ℝ*𝐶 ≤ +∞)
5452, 53syl 14 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ≤ +∞)
55 simpr 110 . . . . . . . . 9 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 = +∞)
5655oveq1d 5934 . . . . . . . 8 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
57 simpl2l 1052 . . . . . . . . . 10 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*)
5857ad2antrr 488 . . . . . . . . 9 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
59 simplr 528 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ)
6059renemnfd 8073 . . . . . . . . 9 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐵 ≠ -∞)
61 xaddpnf2 9916 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
6258, 60, 61syl2anc 411 . . . . . . . 8 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (+∞ +𝑒 𝐵) = +∞)
6356, 62eqtrd 2226 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
6454, 63breqtrrd 4058 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶 ≤ (𝐴 +𝑒 𝐵))
65 xrmineqinf 11415 . . . . . 6 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐶 ≤ (𝐴 +𝑒 𝐵)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = 𝐶)
6651, 52, 64, 65syl3anc 1249 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = 𝐶)
6749ad3antrrr 492 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
6854, 55breqtrrd 4058 . . . . . . 7 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → 𝐶𝐴)
69 xrmineqinf 11415 . . . . . . 7 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝐶𝐴) → inf({𝐴, 𝐶}, ℝ*, < ) = 𝐶)
7067, 52, 68, 69syl3anc 1249 . . . . . 6 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → inf({𝐴, 𝐶}, ℝ*, < ) = 𝐶)
7170oveq1d 5934 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (𝐶 +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
7248, 66, 713brtr4d 4062 . . . 4 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
73 simpr 110 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 = -∞)
74 ge0nemnf 9893 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
7549, 2, 74syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 𝐴 ≠ -∞)
7675ad3antrrr 492 . . . . 5 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → 𝐴 ≠ -∞)
7773, 76pm2.21ddne 2447 . . . 4 ((((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = -∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
78 elxr 9845 . . . . . 6 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7949, 78sylib 122 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
8079ad2antrr 488 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
8131, 72, 77, 80mpjao3dan 1318 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 ∈ ℝ) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
82 xrlemininf 11417 . . . . . . . 8 ((0 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (0 ≤ inf({𝐴, 𝐶}, ℝ*, < ) ↔ (0 ≤ 𝐴 ∧ 0 ≤ 𝐶)))
8336, 49, 32, 82syl3anc 1249 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (0 ≤ inf({𝐴, 𝐶}, ℝ*, < ) ↔ (0 ≤ 𝐴 ∧ 0 ≤ 𝐶)))
842, 37, 83mpbir2and 946 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → 0 ≤ inf({𝐴, 𝐶}, ℝ*, < ))
85 xrmincl 11412 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → inf({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ*)
8649, 32, 85syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ*)
87 xle2add 9948 . . . . . . 7 (((0 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (inf({𝐴, 𝐶}, ℝ*, < ) ∈ ℝ*𝐶 ∈ ℝ*)) → ((0 ≤ inf({𝐴, 𝐶}, ℝ*, < ) ∧ 𝐶𝐶) → (0 +𝑒 𝐶) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 𝐶)))
8836, 32, 86, 32, 87syl22anc 1250 . . . . . 6 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((0 ≤ inf({𝐴, 𝐶}, ℝ*, < ) ∧ 𝐶𝐶) → (0 +𝑒 𝐶) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 𝐶)))
8984, 34, 88mp2and 433 . . . . 5 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (0 +𝑒 𝐶) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 𝐶))
9089ad2antrr 488 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (0 +𝑒 𝐶) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 𝐶))
9150ad2antrr 488 . . . . . 6 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
9232ad2antrr 488 . . . . . 6 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶 ∈ ℝ*)
9392, 53syl 14 . . . . . . 7 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶 ≤ +∞)
94 simpr 110 . . . . . . . . 9 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐵 = +∞)
9594oveq2d 5935 . . . . . . . 8 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
96 xaddpnf1 9915 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
9749, 75, 96syl2anc 411 . . . . . . . . 9 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐴 +𝑒 +∞) = +∞)
9897ad2antrr 488 . . . . . . . 8 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 +∞) = +∞)
9995, 98eqtrd 2226 . . . . . . 7 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (𝐴 +𝑒 𝐵) = +∞)
10093, 99breqtrrd 4058 . . . . . 6 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶 ≤ (𝐴 +𝑒 𝐵))
10191, 92, 100, 65syl3anc 1249 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = 𝐶)
102 xaddid2 9932 . . . . . 6 (𝐶 ∈ ℝ* → (0 +𝑒 𝐶) = 𝐶)
10392, 102syl 14 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (0 +𝑒 𝐶) = 𝐶)
104101, 103eqtr4d 2229 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = (0 +𝑒 𝐶))
10557adantr 276 . . . . . 6 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐵 ∈ ℝ*)
10693, 94breqtrrd 4058 . . . . . 6 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → 𝐶𝐵)
107 xrmineqinf 11415 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝐶𝐵) → inf({𝐵, 𝐶}, ℝ*, < ) = 𝐶)
108105, 92, 106, 107syl3anc 1249 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → inf({𝐵, 𝐶}, ℝ*, < ) = 𝐶)
109108oveq2d 5935 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 𝐶))
11090, 104, 1093brtr4d 4062 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
111 simpr 110 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐵 = -∞)
11257adantr 276 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
1135ad2antrr 488 . . . . 5 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → 0 ≤ 𝐵)
114 ge0nemnf 9893 . . . . 5 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → 𝐵 ≠ -∞)
115112, 113, 114syl2anc 411 . . . 4 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → 𝐵 ≠ -∞)
116111, 115pm2.21ddne 2447 . . 3 (((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) ∧ 𝐵 = -∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
117 elxr 9845 . . . 4 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
11857, 117sylib 122 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
11981, 110, 116, 118mpjao3dan 1318 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 ∈ ℝ) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
12050adantr 276 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
121120xrleidd 9870 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐵) ≤ (𝐴 +𝑒 𝐵))
122 prcom 3695 . . . . 5 {𝐶, (𝐴 +𝑒 𝐵)} = {(𝐴 +𝑒 𝐵), 𝐶}
123122infeq1i 7074 . . . 4 inf({𝐶, (𝐴 +𝑒 𝐵)}, ℝ*, < ) = inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < )
12432adantr 276 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐶 ∈ ℝ*)
125 pnfge 9858 . . . . . . 7 ((𝐴 +𝑒 𝐵) ∈ ℝ* → (𝐴 +𝑒 𝐵) ≤ +∞)
126120, 125syl 14 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐵) ≤ +∞)
127 simpr 110 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐶 = +∞)
128126, 127breqtrrd 4058 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (𝐴 +𝑒 𝐵) ≤ 𝐶)
129 xrmineqinf 11415 . . . . 5 ((𝐶 ∈ ℝ* ∧ (𝐴 +𝑒 𝐵) ∈ ℝ* ∧ (𝐴 +𝑒 𝐵) ≤ 𝐶) → inf({𝐶, (𝐴 +𝑒 𝐵)}, ℝ*, < ) = (𝐴 +𝑒 𝐵))
130124, 120, 128, 129syl3anc 1249 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({𝐶, (𝐴 +𝑒 𝐵)}, ℝ*, < ) = (𝐴 +𝑒 𝐵))
131123, 130eqtr3id 2240 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) = (𝐴 +𝑒 𝐵))
132 prcom 3695 . . . . . 6 {𝐶, 𝐴} = {𝐴, 𝐶}
133132infeq1i 7074 . . . . 5 inf({𝐶, 𝐴}, ℝ*, < ) = inf({𝐴, 𝐶}, ℝ*, < )
13449adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
135 pnfge 9858 . . . . . . . 8 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
136134, 135syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐴 ≤ +∞)
137136, 127breqtrrd 4058 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐴𝐶)
138 xrmineqinf 11415 . . . . . 6 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*𝐴𝐶) → inf({𝐶, 𝐴}, ℝ*, < ) = 𝐴)
139124, 134, 137, 138syl3anc 1249 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({𝐶, 𝐴}, ℝ*, < ) = 𝐴)
140133, 139eqtr3id 2240 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({𝐴, 𝐶}, ℝ*, < ) = 𝐴)
141 prcom 3695 . . . . . 6 {𝐶, 𝐵} = {𝐵, 𝐶}
142141infeq1i 7074 . . . . 5 inf({𝐶, 𝐵}, ℝ*, < ) = inf({𝐵, 𝐶}, ℝ*, < )
14338adantr 276 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ*)
144 pnfge 9858 . . . . . . . 8 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
145143, 144syl 14 . . . . . . 7 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐵 ≤ +∞)
146145, 127breqtrrd 4058 . . . . . 6 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → 𝐵𝐶)
147 xrmineqinf 11415 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*𝐵𝐶) → inf({𝐶, 𝐵}, ℝ*, < ) = 𝐵)
148124, 143, 146, 147syl3anc 1249 . . . . 5 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({𝐶, 𝐵}, ℝ*, < ) = 𝐵)
149142, 148eqtr3id 2240 . . . 4 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({𝐵, 𝐶}, ℝ*, < ) = 𝐵)
150140, 149oveq12d 5937 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )) = (𝐴 +𝑒 𝐵))
151121, 131, 1503brtr4d 4062 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = +∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
152 simpl3r 1055 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = -∞) → 0 < 𝐶)
153 nltmnf 9857 . . . . . 6 (0 ∈ ℝ* → ¬ 0 < -∞)
15435, 153ax-mp 5 . . . . 5 ¬ 0 < -∞
155 breq2 4034 . . . . 5 (𝐶 = -∞ → (0 < 𝐶 ↔ 0 < -∞))
156154, 155mtbiri 676 . . . 4 (𝐶 = -∞ → ¬ 0 < 𝐶)
157156adantl 277 . . 3 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = -∞) → ¬ 0 < 𝐶)
158152, 157pm2.21dd 621 . 2 ((((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) ∧ 𝐶 = -∞) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
159 elxr 9845 . . 3 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
16032, 159sylib 122 . 2 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
161119, 151, 158, 160mpjao3dan 1318 1 (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → inf({(𝐴 +𝑒 𝐵), 𝐶}, ℝ*, < ) ≤ (inf({𝐴, 𝐶}, ℝ*, < ) +𝑒 inf({𝐵, 𝐶}, ℝ*, < )))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 979  w3a 980   = wceq 1364  wcel 2164  wne 2364  {cpr 3620   class class class wbr 4030  (class class class)co 5919  infcinf 7044  cr 7873  0cc0 7874   + caddc 7877  +∞cpnf 8053  -∞cmnf 8054  *cxr 8055   < clt 8056  cle 8057  +crp 9722   +𝑒 cxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-xneg 9841  df-xadd 9842  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146
This theorem is referenced by:  bdxmet  14680
  Copyright terms: Public domain W3C validator