ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl2r GIF version

Theorem simpl2r 1036
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl2r (((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simpl2r
StepHypRef Expression
1 simp2r 1009 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜓)
21adantr 274 1 (((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  prarloc  7334  ssfzo12bi  10032
  Copyright terms: Public domain W3C validator