ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pockthg GIF version

Theorem pockthg 12266
Description: The generalized Pocklington's theorem. If 𝑁 − 1 = 𝐴 · 𝐵 where 𝐵 < 𝐴, then 𝑁 is prime if and only if for every prime factor 𝑝 of 𝐴, there is an 𝑥 such that 𝑥↑(𝑁 − 1) = 1( mod 𝑁) and gcd (𝑥↑((𝑁 − 1) / 𝑝) − 1, 𝑁) = 1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1 (𝜑𝐴 ∈ ℕ)
pockthg.2 (𝜑𝐵 ∈ ℕ)
pockthg.3 (𝜑𝐵 < 𝐴)
pockthg.4 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
pockthg.5 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
Assertion
Ref Expression
pockthg (𝜑𝑁 ∈ ℙ)
Distinct variable groups:   𝑥,𝑝,𝑁   𝐴,𝑝,𝑥   𝜑,𝑝,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑝)

Proof of Theorem pockthg
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3 (𝜑𝑁 = ((𝐴 · 𝐵) + 1))
2 pockthg.1 . . . . . . 7 (𝜑𝐴 ∈ ℕ)
3 pockthg.2 . . . . . . 7 (𝜑𝐵 ∈ ℕ)
42, 3nnmulcld 8897 . . . . . 6 (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
5 nnuz 9492 . . . . . 6 ℕ = (ℤ‘1)
64, 5eleqtrdi 2257 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ (ℤ‘1))
7 eluzp1p1 9482 . . . . 5 ((𝐴 · 𝐵) ∈ (ℤ‘1) → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
86, 7syl 14 . . . 4 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘(1 + 1)))
9 df-2 8907 . . . . 5 2 = (1 + 1)
109fveq2i 5483 . . . 4 (ℤ‘2) = (ℤ‘(1 + 1))
118, 10eleqtrrdi 2258 . . 3 (𝜑 → ((𝐴 · 𝐵) + 1) ∈ (ℤ‘2))
121, 11eqeltrd 2241 . 2 (𝜑𝑁 ∈ (ℤ‘2))
13 eluzelre 9467 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
1412, 13syl 14 . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
1514adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ∈ ℝ)
162nnred 8861 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1716resqcld 10603 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℝ)
1817adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) ∈ ℝ)
19 prmnn 12021 . . . . . . . . . 10 (𝑞 ∈ ℙ → 𝑞 ∈ ℕ)
2019ad2antrl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ)
2120nnred 8861 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℝ)
2221resqcld 10603 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞↑2) ∈ ℝ)
23 pockthg.3 . . . . . . . . . . 11 (𝜑𝐵 < 𝐴)
243nnred 8861 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
252nngt0d 8892 . . . . . . . . . . . 12 (𝜑 → 0 < 𝐴)
26 ltmul2 8742 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2724, 16, 16, 25, 26syl112anc 1231 . . . . . . . . . . 11 (𝜑 → (𝐵 < 𝐴 ↔ (𝐴 · 𝐵) < (𝐴 · 𝐴)))
2823, 27mpbid 146 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) < (𝐴 · 𝐴))
292, 2nnmulcld 8897 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐴) ∈ ℕ)
30 nnltp1le 9242 . . . . . . . . . . 11 (((𝐴 · 𝐵) ∈ ℕ ∧ (𝐴 · 𝐴) ∈ ℕ) → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
314, 29, 30syl2anc 409 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐵) < (𝐴 · 𝐴) ↔ ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴)))
3228, 31mpbid 146 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐵) + 1) ≤ (𝐴 · 𝐴))
332nncnd 8862 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
3433sqvald 10574 . . . . . . . . 9 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
3532, 1, 343brtr4d 4008 . . . . . . . 8 (𝜑𝑁 ≤ (𝐴↑2))
3635adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ≤ (𝐴↑2))
37 pockthg.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
3837adantr 274 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)))
39 prmnn 12021 . . . . . . . . . . . . . . . . . . . 20 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
4039ad2antrl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℕ)
4140nncnd 8862 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℂ)
4241exp1d 10572 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) = 𝑝)
43 nnge1 8871 . . . . . . . . . . . . . . . . . . 19 ((𝑝 pCnt 𝐴) ∈ ℕ → 1 ≤ (𝑝 pCnt 𝐴))
4443ad2antll 483 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ≤ (𝑝 pCnt 𝐴))
45 simprl 521 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝 ∈ ℙ)
462nnzd 9303 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℤ)
4746ad2antrr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝐴 ∈ ℤ)
48 1nn0 9121 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
4948a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 1 ∈ ℕ0)
50 pcdvdsb 12230 . . . . . . . . . . . . . . . . . . 19 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 1 ∈ ℕ0) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5145, 47, 49, 50syl3anc 1227 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (1 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑1) ∥ 𝐴))
5244, 51mpbid 146 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (𝑝↑1) ∥ 𝐴)
5342, 52eqbrtrrd 4000 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → 𝑝𝐴)
54 simpl1 989 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝜑)
5554, 2syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐴 ∈ ℕ)
5654, 3syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 ∈ ℕ)
5754, 23syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝐵 < 𝐴)
5854, 1syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑁 = ((𝐴 · 𝐵) + 1))
59 simpl2l 1039 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞 ∈ ℙ)
60 simpl2r 1040 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑞𝑁)
61 simpl3l 1041 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑝 ∈ ℙ)
62 simpl3r 1042 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ∈ ℕ)
63 simprl 521 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → 𝑥 ∈ ℤ)
64 simprrl 529 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → ((𝑥↑(𝑁 − 1)) mod 𝑁) = 1)
65 simprrr 530 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 12265 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) ∧ (𝑥 ∈ ℤ ∧ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1))) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
6766rexlimdvaa 2582 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
68673expa 1192 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → (∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
6953, 68embantd 56 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ (𝑝 ∈ ℙ ∧ (𝑝 pCnt 𝐴) ∈ ℕ)) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
7069expr 373 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
71 id 19 . . . . . . . . . . . . . . . . . 18 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
72 prmuz2 12042 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℙ → 𝑞 ∈ (ℤ‘2))
73 uz2m1nn 9534 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ (ℤ‘2) → (𝑞 − 1) ∈ ℕ)
7472, 73syl 14 . . . . . . . . . . . . . . . . . . 19 (𝑞 ∈ ℙ → (𝑞 − 1) ∈ ℕ)
7574ad2antrl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℕ)
76 pccl 12210 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ ℙ ∧ (𝑞 − 1) ∈ ℕ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7771, 75, 76syl2anr 288 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝑞 − 1)) ∈ ℕ0)
7877nn0ge0d 9161 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝑞 − 1)))
79 breq1 3979 . . . . . . . . . . . . . . . 16 ((𝑝 pCnt 𝐴) = 0 → ((𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)) ↔ 0 ≤ (𝑝 pCnt (𝑞 − 1))))
8078, 79syl5ibrcom 156 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8180a1dd 48 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) = 0 → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))))
82 simpr 109 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
832ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℕ)
8482, 83pccld 12211 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
85 elnn0 9107 . . . . . . . . . . . . . . 15 ((𝑝 pCnt 𝐴) ∈ ℕ0 ↔ ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8684, 85sylib 121 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 pCnt 𝐴) ∈ ℕ ∨ (𝑝 pCnt 𝐴) = 0))
8770, 81, 86mpjaod 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8887ralimdva 2531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (∀𝑝 ∈ ℙ (𝑝𝐴 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑁 − 1)) mod 𝑁) = 1 ∧ (((𝑥↑((𝑁 − 1) / 𝑝)) − 1) gcd 𝑁) = 1)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
8938, 88mpd 13 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1)))
9075nnzd 9303 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞 − 1) ∈ ℤ)
91 pc2dvds 12240 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℤ) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9246, 90, 91syl2an2r 585 . . . . . . . . . . 11 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ (𝑝 pCnt (𝑞 − 1))))
9389, 92mpbird 166 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∥ (𝑞 − 1))
94 dvdsle 11767 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ (𝑞 − 1) ∈ ℕ) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9546, 75, 94syl2an2r 585 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 ∥ (𝑞 − 1) → 𝐴 ≤ (𝑞 − 1)))
9693, 95mpd 13 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ≤ (𝑞 − 1))
972nnnn0d 9158 . . . . . . . . . 10 (𝜑𝐴 ∈ ℕ0)
9820nnnn0d 9158 . . . . . . . . . 10 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℕ0)
99 nn0ltlem1 9246 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑞 ∈ ℕ0) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10097, 98, 99syl2an2r 585 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞𝐴 ≤ (𝑞 − 1)))
10196, 100mpbird 166 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 < 𝑞)
10216adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝐴 ∈ ℝ)
10397nn0ge0d 9161 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐴)
104103adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝐴)
10598nn0ge0d 9161 . . . . . . . . 9 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 0 ≤ 𝑞)
106102, 21, 104, 105lt2sqd 10608 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴 < 𝑞 ↔ (𝐴↑2) < (𝑞↑2)))
107101, 106mpbid 146 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝐴↑2) < (𝑞↑2))
10815, 18, 22, 36, 107lelttrd 8014 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 < (𝑞↑2))
109 dvdszrcl 11718 . . . . . . . . 9 (𝑞𝑁 → (𝑞 ∈ ℤ ∧ 𝑁 ∈ ℤ))
110109simprd 113 . . . . . . . 8 (𝑞𝑁𝑁 ∈ ℤ)
111110ad2antll 483 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑁 ∈ ℤ)
11220nnzd 9303 . . . . . . . 8 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → 𝑞 ∈ ℤ)
113 zsqcl 10515 . . . . . . . 8 (𝑞 ∈ ℤ → (𝑞↑2) ∈ ℤ)
114112, 113syl 14 . . . . . . 7 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑞↑2) ∈ ℤ)
115 zltnle 9228 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑞↑2) ∈ ℤ) → (𝑁 < (𝑞↑2) ↔ ¬ (𝑞↑2) ≤ 𝑁))
116111, 114, 115syl2anc 409 . . . . . 6 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → (𝑁 < (𝑞↑2) ↔ ¬ (𝑞↑2) ≤ 𝑁))
117108, 116mpbid 146 . . . . 5 ((𝜑 ∧ (𝑞 ∈ ℙ ∧ 𝑞𝑁)) → ¬ (𝑞↑2) ≤ 𝑁)
118117expr 373 . . . 4 ((𝜑𝑞 ∈ ℙ) → (𝑞𝑁 → ¬ (𝑞↑2) ≤ 𝑁))
119118con2d 614 . . 3 ((𝜑𝑞 ∈ ℙ) → ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
120119ralrimiva 2537 . 2 (𝜑 → ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁))
121 isprm5 12053 . 2 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑞 ∈ ℙ ((𝑞↑2) ≤ 𝑁 → ¬ 𝑞𝑁)))
12212, 120, 121sylanbrc 414 1 (𝜑𝑁 ∈ ℙ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  w3a 967   = wceq 1342  wcel 2135  wral 2442  wrex 2443   class class class wbr 3976  cfv 5182  (class class class)co 5836  cr 7743  0cc0 7744  1c1 7745   + caddc 7747   · cmul 7749   < clt 7924  cle 7925  cmin 8060   / cdiv 8559  cn 8848  2c2 8899  0cn0 9105  cz 9182  cuz 9457   mod cmo 10247  cexp 10444  cdvds 11713   gcd cgcd 11860  cprime 12018   pCnt cpc 12195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-frec 6350  df-1o 6375  df-2o 6376  df-oadd 6379  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-xnn0 9169  df-z 9183  df-uz 9458  df-q 9549  df-rp 9581  df-fz 9936  df-fzo 10068  df-fl 10195  df-mod 10248  df-seqfrec 10371  df-exp 10445  df-ihash 10678  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-clim 11206  df-proddc 11478  df-dvds 11714  df-gcd 11861  df-prm 12019  df-odz 12121  df-phi 12122  df-pc 12196
This theorem is referenced by:  pockthi  12267
  Copyright terms: Public domain W3C validator