Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1009 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpl2l 1040 simpr2l 1046 simp12l 1100 simp22l 1106 simp32l 1112 issod 4296 funprg 5237 fsnunf 5684 f1oiso2 5794 ecopovtrn 6594 ecopovtrng 6597 addassnqg 7319 ltsonq 7335 ltanqg 7337 ltmnqg 7338 addassnq0 7399 recexprlem1ssu 7571 mulasssrg 7695 distrsrg 7696 lttrsr 7699 ltsosr 7701 ltasrg 7707 mulextsr1lem 7717 mulextsr1 7718 axmulass 7810 axdistr 7811 dmdcanap 8614 ltdiv2 8778 lediv2 8782 ltdiv23 8783 lediv23 8784 xaddass 9801 xaddass2 9802 xlt2add 9812 expaddzaplem 10494 expaddzap 10495 expmulzap 10497 expdivap 10502 leisorel 10746 bdtrilem 11176 bdtri 11177 xrbdtri 11213 fsumsplitsnun 11356 prmexpb 12079 pcpremul 12221 pcdiv 12230 pcqmul 12231 pcqdiv 12235 cnptoprest 12839 ssblps 13025 ssbl 13026 tgqioo 13147 rplogbchbase 13468 |
Copyright terms: Public domain | W3C validator |