| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1021 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2l 1052 simpr2l 1058 simp12l 1112 simp22l 1118 simp32l 1124 issod 4355 funprg 5309 fsnunf 5765 f1oiso2 5877 ecopovtrn 6700 ecopovtrng 6703 dftap2 7336 addassnqg 7468 ltsonq 7484 ltanqg 7486 ltmnqg 7487 addassnq0 7548 recexprlem1ssu 7720 mulasssrg 7844 distrsrg 7845 lttrsr 7848 ltsosr 7850 ltasrg 7856 mulextsr1lem 7866 mulextsr1 7867 axmulass 7959 axdistr 7960 dmdcanap 8768 ltdiv2 8933 lediv2 8937 ltdiv23 8938 lediv23 8939 xaddass 9963 xaddass2 9964 xlt2add 9974 expaddzaplem 10693 expaddzap 10694 expmulzap 10696 expdivap 10701 leisorel 10948 bdtrilem 11423 bdtri 11424 xrbdtri 11460 fsumsplitsnun 11603 prmexpb 12346 pcpremul 12489 pcdiv 12498 pcqmul 12499 pcqdiv 12503 4sqlem12 12598 f1ocpbllem 13014 ercpbl 13035 erlecpbl 13036 cmn4 13513 ablsub4 13521 abladdsub4 13522 cnptoprest 14583 ssblps 14769 ssbl 14770 tgqioo 14899 plyadd 15095 plymul 15096 rplogbchbase 15294 |
| Copyright terms: Public domain | W3C validator |