| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1021 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2l 1052 simpr2l 1058 simp12l 1112 simp22l 1118 simp32l 1124 issod 4355 funprg 5309 fsnunf 5765 f1oiso2 5877 ecopovtrn 6700 ecopovtrng 6703 dftap2 7334 addassnqg 7466 ltsonq 7482 ltanqg 7484 ltmnqg 7485 addassnq0 7546 recexprlem1ssu 7718 mulasssrg 7842 distrsrg 7843 lttrsr 7846 ltsosr 7848 ltasrg 7854 mulextsr1lem 7864 mulextsr1 7865 axmulass 7957 axdistr 7958 dmdcanap 8766 ltdiv2 8931 lediv2 8935 ltdiv23 8936 lediv23 8937 xaddass 9961 xaddass2 9962 xlt2add 9972 expaddzaplem 10691 expaddzap 10692 expmulzap 10694 expdivap 10699 leisorel 10946 bdtrilem 11421 bdtri 11422 xrbdtri 11458 fsumsplitsnun 11601 prmexpb 12344 pcpremul 12487 pcdiv 12496 pcqmul 12497 pcqdiv 12501 4sqlem12 12596 f1ocpbllem 13012 ercpbl 13033 erlecpbl 13034 cmn4 13511 ablsub4 13519 abladdsub4 13520 cnptoprest 14559 ssblps 14745 ssbl 14746 tgqioo 14875 plyadd 15071 plymul 15072 rplogbchbase 15270 |
| Copyright terms: Public domain | W3C validator |