| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1022 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2l 1053 simpr2l 1059 simp12l 1113 simp22l 1119 simp32l 1125 issod 4370 funprg 5329 fsnunf 5791 f1oiso2 5903 ecopovtrn 6726 ecopovtrng 6729 dftap2 7370 addassnqg 7502 ltsonq 7518 ltanqg 7520 ltmnqg 7521 addassnq0 7582 recexprlem1ssu 7754 mulasssrg 7878 distrsrg 7879 lttrsr 7882 ltsosr 7884 ltasrg 7890 mulextsr1lem 7900 mulextsr1 7901 axmulass 7993 axdistr 7994 dmdcanap 8802 ltdiv2 8967 lediv2 8971 ltdiv23 8972 lediv23 8973 xaddass 9998 xaddass2 9999 xlt2add 10009 expaddzaplem 10734 expaddzap 10735 expmulzap 10737 expdivap 10742 leisorel 10989 swrdspsleq 11128 pfxeq 11155 bdtrilem 11594 bdtri 11595 xrbdtri 11631 fsumsplitsnun 11774 prmexpb 12517 pcpremul 12660 pcdiv 12669 pcqmul 12670 pcqdiv 12674 4sqlem12 12769 f1ocpbllem 13186 ercpbl 13207 erlecpbl 13208 cmn4 13685 ablsub4 13693 abladdsub4 13694 cnptoprest 14755 ssblps 14941 ssbl 14942 tgqioo 15071 plyadd 15267 plymul 15268 rplogbchbase 15466 |
| Copyright terms: Public domain | W3C validator |