| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) | 
| Ref | Expression | 
|---|---|
| simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1021 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simpl2l 1052 simpr2l 1058 simp12l 1112 simp22l 1118 simp32l 1124 issod 4354 funprg 5308 fsnunf 5762 f1oiso2 5874 ecopovtrn 6691 ecopovtrng 6694 dftap2 7318 addassnqg 7449 ltsonq 7465 ltanqg 7467 ltmnqg 7468 addassnq0 7529 recexprlem1ssu 7701 mulasssrg 7825 distrsrg 7826 lttrsr 7829 ltsosr 7831 ltasrg 7837 mulextsr1lem 7847 mulextsr1 7848 axmulass 7940 axdistr 7941 dmdcanap 8749 ltdiv2 8914 lediv2 8918 ltdiv23 8919 lediv23 8920 xaddass 9944 xaddass2 9945 xlt2add 9955 expaddzaplem 10674 expaddzap 10675 expmulzap 10677 expdivap 10682 leisorel 10929 bdtrilem 11404 bdtri 11405 xrbdtri 11441 fsumsplitsnun 11584 prmexpb 12319 pcpremul 12462 pcdiv 12471 pcqmul 12472 pcqdiv 12476 4sqlem12 12571 f1ocpbllem 12953 ercpbl 12974 erlecpbl 12975 cmn4 13435 ablsub4 13443 abladdsub4 13444 cnptoprest 14475 ssblps 14661 ssbl 14662 tgqioo 14791 plyadd 14987 plymul 14988 rplogbchbase 15186 | 
| Copyright terms: Public domain | W3C validator |