Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2l | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1014 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: simpl2l 1045 simpr2l 1051 simp12l 1105 simp22l 1111 simp32l 1117 issod 4302 funprg 5246 fsnunf 5694 f1oiso2 5804 ecopovtrn 6607 ecopovtrng 6610 addassnqg 7333 ltsonq 7349 ltanqg 7351 ltmnqg 7352 addassnq0 7413 recexprlem1ssu 7585 mulasssrg 7709 distrsrg 7710 lttrsr 7713 ltsosr 7715 ltasrg 7721 mulextsr1lem 7731 mulextsr1 7732 axmulass 7824 axdistr 7825 dmdcanap 8628 ltdiv2 8792 lediv2 8796 ltdiv23 8797 lediv23 8798 xaddass 9815 xaddass2 9816 xlt2add 9826 expaddzaplem 10508 expaddzap 10509 expmulzap 10511 expdivap 10516 leisorel 10761 bdtrilem 11191 bdtri 11192 xrbdtri 11228 fsumsplitsnun 11371 prmexpb 12094 pcpremul 12236 pcdiv 12245 pcqmul 12246 pcqdiv 12250 cnptoprest 12994 ssblps 13180 ssbl 13181 tgqioo 13302 rplogbchbase 13623 |
Copyright terms: Public domain | W3C validator |