| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | GIF version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | 3ad2ant2 1024 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simpl2l 1055 simpr2l 1061 simp12l 1115 simp22l 1121 simp32l 1127 issod 4387 funprg 5347 fsnunf 5812 f1oiso2 5924 ecopovtrn 6749 ecopovtrng 6752 dftap2 7405 addassnqg 7537 ltsonq 7553 ltanqg 7555 ltmnqg 7556 addassnq0 7617 recexprlem1ssu 7789 mulasssrg 7913 distrsrg 7914 lttrsr 7917 ltsosr 7919 ltasrg 7925 mulextsr1lem 7935 mulextsr1 7936 axmulass 8028 axdistr 8029 dmdcanap 8837 ltdiv2 9002 lediv2 9006 ltdiv23 9007 lediv23 9008 xaddass 10033 xaddass2 10034 xlt2add 10044 expaddzaplem 10771 expaddzap 10772 expmulzap 10774 expdivap 10779 leisorel 11026 swrdspsleq 11165 pfxeq 11194 ccatopth2 11215 bdtrilem 11716 bdtri 11717 xrbdtri 11753 fsumsplitsnun 11896 prmexpb 12639 pcpremul 12782 pcdiv 12791 pcqmul 12792 pcqdiv 12796 4sqlem12 12891 f1ocpbllem 13309 ercpbl 13330 erlecpbl 13331 cmn4 13808 ablsub4 13816 abladdsub4 13817 cnptoprest 14878 ssblps 15064 ssbl 15065 tgqioo 15194 plyadd 15390 plymul 15391 rplogbchbase 15589 |
| Copyright terms: Public domain | W3C validator |