ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpl3l GIF version

Theorem simpl3l 1054
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpl3l (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)

Proof of Theorem simpl3l
StepHypRef Expression
1 simp3l 1027 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
21adantr 276 1 (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  tfisi  4623  ltmul1a  8618  ltmul1  8619  lemul1a  8885  xaddass  9944  dvdsadd2b  12005  dvdsaddre2b  12006  pockthg  12526
  Copyright terms: Public domain W3C validator