| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl3an3br | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| syl3an3br.1 | ⊢ (𝜃 ↔ 𝜑) | 
| syl3an3br.2 | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | 
| Ref | Expression | 
|---|---|
| syl3an3br | ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3an3br.1 | . . 3 ⊢ (𝜃 ↔ 𝜑) | |
| 2 | 1 | biimpri 133 | . 2 ⊢ (𝜑 → 𝜃) | 
| 3 | syl3an3br.2 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syl3an3 1284 | 1 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: opelrng 4898 phpeqd 6996 | 
| Copyright terms: Public domain | W3C validator |