Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an3br | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3br.1 | |
syl3an3br.2 |
Ref | Expression |
---|---|
syl3an3br |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3br.1 | . . 3 | |
2 | 1 | biimpri 133 | . 2 |
3 | syl3an3br.2 | . 2 | |
4 | 2, 3 | syl3an3 1273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: opelrng 4852 phpeqd 6922 |
Copyright terms: Public domain | W3C validator |