ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelrng GIF version

Theorem opelrng 4815
Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
opelrng ((𝐴𝐹𝐵𝐺 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → 𝐵 ∈ ran 𝐶)

Proof of Theorem opelrng
StepHypRef Expression
1 df-br 3966 . 2 (𝐴𝐶𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐶)
2 brelrng 4814 . 2 ((𝐴𝐹𝐵𝐺𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶)
31, 2syl3an3br 1261 1 ((𝐴𝐹𝐵𝐺 ∧ ⟨𝐴, 𝐵⟩ ∈ 𝐶) → 𝐵 ∈ ran 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 963  wcel 2128  cop 3563   class class class wbr 3965  ran crn 4584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-cnv 4591  df-dm 4593  df-rn 4594
This theorem is referenced by:  2ndrn  6125
  Copyright terms: Public domain W3C validator