Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelrng | GIF version |
Description: Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
opelrng | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → 𝐵 ∈ ran 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3966 | . 2 ⊢ (𝐴𝐶𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶) | |
2 | brelrng 4814 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 𝐴𝐶𝐵) → 𝐵 ∈ ran 𝐶) | |
3 | 1, 2 | syl3an3br 1261 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ∧ 〈𝐴, 𝐵〉 ∈ 𝐶) → 𝐵 ∈ ran 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 ∈ wcel 2128 〈cop 3563 class class class wbr 3965 ran crn 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-cnv 4591 df-dm 4593 df-rn 4594 |
This theorem is referenced by: 2ndrn 6125 |
Copyright terms: Public domain | W3C validator |