| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) |
| syl3an.2 | ⊢ (𝜒 → 𝜃) |
| syl3an.3 | ⊢ (𝜏 → 𝜂) |
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1186 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl2an3an 1309 funtpg 5310 ftpg 5749 eloprabga 6013 prfidisj 6997 djuenun 7295 addasspig 7414 mulasspig 7416 distrpig 7417 addcanpig 7418 mulcanpig 7419 ltapig 7422 distrnqg 7471 distrnq0 7543 cnegexlem2 8219 zletr 9392 zdivadd 9432 xaddass 9961 iooneg 10080 zltaddlt1le 10099 fzen 10135 fzaddel 10151 fzrev 10176 fzrevral2 10198 fzshftral 10200 fzosubel2 10288 fzonn0p1p1 10306 resqrexlemover 11192 fisum0diag2 11629 dvdsnegb 11990 muldvds1 11998 muldvds2 11999 dvdscmul 12000 dvdsmulc 12001 dvds2add 12007 dvds2sub 12008 dvdstr 12010 addmodlteqALT 12041 divalgb 12107 ndvdsadd 12113 absmulgcd 12209 rpmulgcd 12218 cncongr2 12297 hashdvds 12414 pythagtriplem1 12459 mulgmodid 13367 nmzsubg 13416 |
| Copyright terms: Public domain | W3C validator |