| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) | 
| Ref | Expression | 
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) | 
| syl3an.2 | ⊢ (𝜒 → 𝜃) | 
| syl3an.3 | ⊢ (𝜏 → 𝜂) | 
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | 
| Ref | Expression | 
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1186 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) | 
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: syl2an3an 1309 funtpg 5309 ftpg 5746 eloprabga 6009 prfidisj 6988 djuenun 7279 addasspig 7397 mulasspig 7399 distrpig 7400 addcanpig 7401 mulcanpig 7402 ltapig 7405 distrnqg 7454 distrnq0 7526 cnegexlem2 8202 zletr 9375 zdivadd 9415 xaddass 9944 iooneg 10063 zltaddlt1le 10082 fzen 10118 fzaddel 10134 fzrev 10159 fzrevral2 10181 fzshftral 10183 fzosubel2 10271 fzonn0p1p1 10289 resqrexlemover 11175 fisum0diag2 11612 dvdsnegb 11973 muldvds1 11981 muldvds2 11982 dvdscmul 11983 dvdsmulc 11984 dvds2add 11990 dvds2sub 11991 dvdstr 11993 addmodlteqALT 12024 divalgb 12090 ndvdsadd 12096 absmulgcd 12184 rpmulgcd 12193 cncongr2 12272 hashdvds 12389 pythagtriplem1 12434 mulgmodid 13291 nmzsubg 13340 | 
| Copyright terms: Public domain | W3C validator |