![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an | GIF version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 | ⊢ (𝜑 → 𝜓) |
syl3an.2 | ⊢ (𝜒 → 𝜃) |
syl3an.3 | ⊢ (𝜏 → 𝜂) |
syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
4 | 1, 2, 3 | 3anim123i 1186 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl2an3an 1309 funtpg 5305 ftpg 5742 eloprabga 6005 prfidisj 6983 djuenun 7272 addasspig 7390 mulasspig 7392 distrpig 7393 addcanpig 7394 mulcanpig 7395 ltapig 7398 distrnqg 7447 distrnq0 7519 cnegexlem2 8195 zletr 9366 zdivadd 9406 xaddass 9935 iooneg 10054 zltaddlt1le 10073 fzen 10109 fzaddel 10125 fzrev 10150 fzrevral2 10172 fzshftral 10174 fzosubel2 10262 fzonn0p1p1 10280 resqrexlemover 11154 fisum0diag2 11590 dvdsnegb 11951 muldvds1 11959 muldvds2 11960 dvdscmul 11961 dvdsmulc 11962 dvds2add 11968 dvds2sub 11969 dvdstr 11971 addmodlteqALT 12001 divalgb 12066 ndvdsadd 12072 absmulgcd 12154 rpmulgcd 12163 cncongr2 12242 hashdvds 12359 pythagtriplem1 12403 mulgmodid 13231 nmzsubg 13280 |
Copyright terms: Public domain | W3C validator |