![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an | GIF version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 | ⊢ (𝜑 → 𝜓) |
syl3an.2 | ⊢ (𝜒 → 𝜃) |
syl3an.3 | ⊢ (𝜏 → 𝜂) |
syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
4 | 1, 2, 3 | 3anim123i 1186 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl2an3an 1309 funtpg 5306 ftpg 5743 eloprabga 6006 prfidisj 6985 djuenun 7274 addasspig 7392 mulasspig 7394 distrpig 7395 addcanpig 7396 mulcanpig 7397 ltapig 7400 distrnqg 7449 distrnq0 7521 cnegexlem2 8197 zletr 9369 zdivadd 9409 xaddass 9938 iooneg 10057 zltaddlt1le 10076 fzen 10112 fzaddel 10128 fzrev 10153 fzrevral2 10175 fzshftral 10177 fzosubel2 10265 fzonn0p1p1 10283 resqrexlemover 11157 fisum0diag2 11593 dvdsnegb 11954 muldvds1 11962 muldvds2 11963 dvdscmul 11964 dvdsmulc 11965 dvds2add 11971 dvds2sub 11972 dvdstr 11974 addmodlteqALT 12004 divalgb 12069 ndvdsadd 12075 absmulgcd 12157 rpmulgcd 12166 cncongr2 12245 hashdvds 12362 pythagtriplem1 12406 mulgmodid 13234 nmzsubg 13283 |
Copyright terms: Public domain | W3C validator |