Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an | GIF version |
Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
Ref | Expression |
---|---|
syl3an.1 | ⊢ (𝜑 → 𝜓) |
syl3an.2 | ⊢ (𝜒 → 𝜃) |
syl3an.3 | ⊢ (𝜏 → 𝜂) |
syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
4 | 1, 2, 3 | 3anim123i 1179 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: syl2an3an 1293 funtpg 5249 ftpg 5680 eloprabga 5940 prfidisj 6904 djuenun 7189 addasspig 7292 mulasspig 7294 distrpig 7295 addcanpig 7296 mulcanpig 7297 ltapig 7300 distrnqg 7349 distrnq0 7421 cnegexlem2 8095 zletr 9261 zdivadd 9301 xaddass 9826 iooneg 9945 zltaddlt1le 9964 fzen 9999 fzaddel 10015 fzrev 10040 fzrevral2 10062 fzshftral 10064 fzosubel2 10151 fzonn0p1p1 10169 resqrexlemover 10974 fisum0diag2 11410 dvdsnegb 11770 muldvds1 11778 muldvds2 11779 dvdscmul 11780 dvdsmulc 11781 dvds2add 11787 dvds2sub 11788 dvdstr 11790 addmodlteqALT 11819 divalgb 11884 ndvdsadd 11890 absmulgcd 11972 rpmulgcd 11981 cncongr2 12058 hashdvds 12175 pythagtriplem1 12219 |
Copyright terms: Public domain | W3C validator |