| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) |
| syl3an.2 | ⊢ (𝜒 → 𝜃) |
| syl3an.3 | ⊢ (𝜏 → 𝜂) |
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1189 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: syl2an3an 1313 funtpg 5348 ftpg 5796 eloprabga 6062 prfidisj 7057 djuenun 7362 addasspig 7485 mulasspig 7487 distrpig 7488 addcanpig 7489 mulcanpig 7490 ltapig 7493 distrnqg 7542 distrnq0 7614 cnegexlem2 8290 zletr 9464 zdivadd 9504 xaddass 10033 iooneg 10152 zltaddlt1le 10171 fzen 10207 fzaddel 10223 fzrev 10248 fzrevral2 10270 fzshftral 10272 fzosubel2 10368 fzonn0p1p1 10386 swrdf 11153 pfxccatin12lem4 11224 resqrexlemover 11487 fisum0diag2 11924 dvdsnegb 12285 muldvds1 12293 muldvds2 12294 dvdscmul 12295 dvdsmulc 12296 dvds2add 12302 dvds2sub 12303 dvdstr 12305 addmodlteqALT 12336 divalgb 12402 ndvdsadd 12408 absmulgcd 12504 rpmulgcd 12513 cncongr2 12592 hashdvds 12709 pythagtriplem1 12754 mulgmodid 13664 nmzsubg 13713 |
| Copyright terms: Public domain | W3C validator |