| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) |
| syl3an.2 | ⊢ (𝜒 → 𝜃) |
| syl3an.3 | ⊢ (𝜏 → 𝜂) |
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1208 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl2an3an 1332 funtpg 5372 ftpg 5827 eloprabga 6097 prfidisj 7097 djuenun 7402 addasspig 7525 mulasspig 7527 distrpig 7528 addcanpig 7529 mulcanpig 7530 ltapig 7533 distrnqg 7582 distrnq0 7654 cnegexlem2 8330 zletr 9504 zdivadd 9544 xaddass 10073 iooneg 10192 zltaddlt1le 10211 fzen 10247 fzaddel 10263 fzrev 10288 fzrevral2 10310 fzshftral 10312 fzosubel2 10409 fzonn0p1p1 10427 swrdf 11195 pfxccatin12lem4 11266 resqrexlemover 11529 fisum0diag2 11966 dvdsnegb 12327 muldvds1 12335 muldvds2 12336 dvdscmul 12337 dvdsmulc 12338 dvds2add 12344 dvds2sub 12345 dvdstr 12347 addmodlteqALT 12378 divalgb 12444 ndvdsadd 12450 absmulgcd 12546 rpmulgcd 12555 cncongr2 12634 hashdvds 12751 pythagtriplem1 12796 mulgmodid 13706 nmzsubg 13755 |
| Copyright terms: Public domain | W3C validator |