| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) |
| syl3an.2 | ⊢ (𝜒 → 𝜃) |
| syl3an.3 | ⊢ (𝜏 → 𝜂) |
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1186 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syl2an3an 1309 funtpg 5310 ftpg 5749 eloprabga 6013 prfidisj 6997 djuenun 7297 addasspig 7416 mulasspig 7418 distrpig 7419 addcanpig 7420 mulcanpig 7421 ltapig 7424 distrnqg 7473 distrnq0 7545 cnegexlem2 8221 zletr 9394 zdivadd 9434 xaddass 9963 iooneg 10082 zltaddlt1le 10101 fzen 10137 fzaddel 10153 fzrev 10178 fzrevral2 10200 fzshftral 10202 fzosubel2 10290 fzonn0p1p1 10308 resqrexlemover 11194 fisum0diag2 11631 dvdsnegb 11992 muldvds1 12000 muldvds2 12001 dvdscmul 12002 dvdsmulc 12003 dvds2add 12009 dvds2sub 12010 dvdstr 12012 addmodlteqALT 12043 divalgb 12109 ndvdsadd 12115 absmulgcd 12211 rpmulgcd 12220 cncongr2 12299 hashdvds 12416 pythagtriplem1 12461 mulgmodid 13369 nmzsubg 13418 |
| Copyright terms: Public domain | W3C validator |