| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an | GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 13-May-2004.) |
| Ref | Expression |
|---|---|
| syl3an.1 | ⊢ (𝜑 → 𝜓) |
| syl3an.2 | ⊢ (𝜒 → 𝜃) |
| syl3an.3 | ⊢ (𝜏 → 𝜂) |
| syl3an.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3an | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3an.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3an.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1187 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3an.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl2an3an 1311 funtpg 5330 ftpg 5775 eloprabga 6039 prfidisj 7031 djuenun 7331 addasspig 7450 mulasspig 7452 distrpig 7453 addcanpig 7454 mulcanpig 7455 ltapig 7458 distrnqg 7507 distrnq0 7579 cnegexlem2 8255 zletr 9429 zdivadd 9469 xaddass 9998 iooneg 10117 zltaddlt1le 10136 fzen 10172 fzaddel 10188 fzrev 10213 fzrevral2 10235 fzshftral 10237 fzosubel2 10331 fzonn0p1p1 10349 swrdf 11116 resqrexlemover 11365 fisum0diag2 11802 dvdsnegb 12163 muldvds1 12171 muldvds2 12172 dvdscmul 12173 dvdsmulc 12174 dvds2add 12180 dvds2sub 12181 dvdstr 12183 addmodlteqALT 12214 divalgb 12280 ndvdsadd 12286 absmulgcd 12382 rpmulgcd 12391 cncongr2 12470 hashdvds 12587 pythagtriplem1 12632 mulgmodid 13541 nmzsubg 13590 |
| Copyright terms: Public domain | W3C validator |