ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl7bi GIF version

Theorem syl7bi 164
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
syl7bi.1 (𝜑𝜓)
syl7bi.2 (𝜒 → (𝜃 → (𝜓𝜏)))
Assertion
Ref Expression
syl7bi (𝜒 → (𝜃 → (𝜑𝜏)))

Proof of Theorem syl7bi
StepHypRef Expression
1 syl7bi.1 . . 3 (𝜑𝜓)
21biimpi 119 . 2 (𝜑𝜓)
3 syl7bi.2 . 2 (𝜒 → (𝜃 → (𝜓𝜏)))
42, 3syl7 69 1 (𝜒 → (𝜃 → (𝜑𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  necon1addc  2412  necon1ddc  2414  rspct  2823  2reuswapdc  2930  nn0lt2  9272  fzofzim  10123  ndvdssub  11867  bj-findis  13861
  Copyright terms: Public domain W3C validator