ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspct GIF version

Theorem rspct 2861
Description: A closed version of rspc 2862. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 𝑥𝜓
Assertion
Ref Expression
rspct (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2480 . . . 4 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 eleq1 2259 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 276 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝑥𝐵𝐴𝐵))
4 simpr 110 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝜑𝜓))
53, 4imbi12d 234 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
65ex 115 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
76a2i 11 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
87alimi 1469 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
9 nfv 1542 . . . . . . 7 𝑥 𝐴𝐵
10 rspct.1 . . . . . . 7 𝑥𝜓
119, 10nfim 1586 . . . . . 6 𝑥(𝐴𝐵𝜓)
12 nfcv 2339 . . . . . 6 𝑥𝐴
1311, 12spcgft 2841 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
148, 13syl 14 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
151, 14syl7bi 165 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))))
1615com34 83 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
1716pm2.43d 50 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wnf 1474  wcel 2167  wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765
This theorem is referenced by:  sumdc2  15445
  Copyright terms: Public domain W3C validator