Proof of Theorem rspct
| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ral 2480 | 
. . . 4
⊢
(∀𝑥 ∈
𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | 
| 2 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | 
| 3 | 2 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ (𝜑 ↔ 𝜓)) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | 
| 4 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝐴 ∧ (𝜑 ↔ 𝜓)) → (𝜑 ↔ 𝜓)) | 
| 5 | 3, 4 | imbi12d 234 | 
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ (𝜑 ↔ 𝜓)) → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) | 
| 6 | 5 | ex 115 | 
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 7 | 6 | a2i 11 | 
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 8 | 7 | alimi 1469 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 9 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ∈ 𝐵 | 
| 10 |   | rspct.1 | 
. . . . . . 7
⊢
Ⅎ𝑥𝜓 | 
| 11 | 9, 10 | nfim 1586 | 
. . . . . 6
⊢
Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) | 
| 12 |   | nfcv 2339 | 
. . . . . 6
⊢
Ⅎ𝑥𝐴 | 
| 13 | 11, 12 | spcgft 2841 | 
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) → (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 14 | 8, 13 | syl 14 | 
. . . 4
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 15 | 1, 14 | syl7bi 165 | 
. . 3
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)))) | 
| 16 | 15 | com34 83 | 
. 2
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)))) | 
| 17 | 16 | pm2.43d 50 | 
1
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) |