ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspct GIF version

Theorem rspct 2832
Description: A closed version of rspc 2833. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 𝑥𝜓
Assertion
Ref Expression
rspct (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2458 . . . 4 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 eleq1 2238 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 276 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝑥𝐵𝐴𝐵))
4 simpr 110 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝜑𝜓))
53, 4imbi12d 234 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
65ex 115 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
76a2i 11 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
87alimi 1453 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
9 nfv 1526 . . . . . . 7 𝑥 𝐴𝐵
10 rspct.1 . . . . . . 7 𝑥𝜓
119, 10nfim 1570 . . . . . 6 𝑥(𝐴𝐵𝜓)
12 nfcv 2317 . . . . . 6 𝑥𝐴
1311, 12spcgft 2812 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
148, 13syl 14 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
151, 14syl7bi 165 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))))
1615com34 83 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
1716pm2.43d 50 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wnf 1458  wcel 2146  wral 2453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737
This theorem is referenced by:  sumdc2  14033
  Copyright terms: Public domain W3C validator