ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspct GIF version

Theorem rspct 2848
Description: A closed version of rspc 2849. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 𝑥𝜓
Assertion
Ref Expression
rspct (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 2472 . . . 4 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 eleq1 2251 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 276 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝑥𝐵𝐴𝐵))
4 simpr 110 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝜑𝜓))
53, 4imbi12d 234 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
65ex 115 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
76a2i 11 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
87alimi 1465 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
9 nfv 1538 . . . . . . 7 𝑥 𝐴𝐵
10 rspct.1 . . . . . . 7 𝑥𝜓
119, 10nfim 1582 . . . . . 6 𝑥(𝐴𝐵𝜓)
12 nfcv 2331 . . . . . 6 𝑥𝐴
1311, 12spcgft 2828 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
148, 13syl 14 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
151, 14syl7bi 165 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))))
1615com34 83 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
1716pm2.43d 50 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1361   = wceq 1363  wnf 1470  wcel 2159  wral 2467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-v 2753
This theorem is referenced by:  sumdc2  14934
  Copyright terms: Public domain W3C validator