ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 GIF version

Theorem nn0lt2 9132
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 700 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1i 9 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 9074 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 9082 . . . . . 6 2 ∈ ℤ
5 zltlem1 9111 . . . . . 6 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 409 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 8838 . . . . . 6 (2 − 1) = 1
87breq2i 3937 . . . . 5 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8syl6bb 195 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2392 . . . . 5 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 1z 9080 . . . . . . . 8 1 ∈ ℤ
12 zltlen 9129 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
133, 11, 12sylancl 409 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
14 nn0lt10b 9131 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1514biimpa 294 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1615orcd 722 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1716ex 114 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1813, 17sylbird 169 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
1918expd 256 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2010, 19syl7bi 164 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
219, 20sylbid 149 . . 3 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2221imp 123 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
23 zdceq 9126 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
243, 11, 23sylancl 409 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
2524adantr 274 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → DECID 𝑁 = 1)
26 dcne 2319 . . 3 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1))
2725, 26sylib 121 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1))
282, 22, 27mpjaod 707 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  (class class class)co 5774  0cc0 7620  1c1 7621   < clt 7800  cle 7801  cmin 7933  2c2 8771  0cn0 8977  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator