ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 GIF version

Theorem nn0lt2 9407
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 712 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1i 9 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 9346 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 9354 . . . . . 6 2 ∈ ℤ
5 zltlem1 9383 . . . . . 6 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 413 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 9108 . . . . . 6 (2 − 1) = 1
87breq2i 4041 . . . . 5 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8bitrdi 196 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2451 . . . . 5 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 1z 9352 . . . . . . . 8 1 ∈ ℤ
12 zltlen 9404 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
133, 11, 12sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
14 nn0lt10b 9406 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1514biimpa 296 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1615orcd 734 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1716ex 115 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1813, 17sylbird 170 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
1918expd 258 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2010, 19syl7bi 165 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
219, 20sylbid 150 . . 3 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2221imp 124 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
23 zdceq 9401 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
243, 11, 23sylancl 413 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
2524adantr 276 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → DECID 𝑁 = 1)
26 dcne 2378 . . 3 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1))
2725, 26sylib 122 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1))
282, 22, 27mpjaod 719 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  (class class class)co 5922  0cc0 7879  1c1 7880   < clt 8061  cle 8062  cmin 8197  2c2 9041  0cn0 9249  cz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator