| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0lt2 | GIF version | ||
| Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn0lt2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 713 | . . 3 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 3 | nn0z 9412 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 4 | 2z 9420 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 5 | zltlem1 9450 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
| 6 | 3, 4, 5 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
| 7 | 2m1e1 9174 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 8 | 7 | breq2i 4059 | . . . . 5 ⊢ (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1) |
| 9 | 6, 8 | bitrdi 196 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
| 10 | necom 2461 | . . . . 5 ⊢ (𝑁 ≠ 1 ↔ 1 ≠ 𝑁) | |
| 11 | 1z 9418 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 12 | zltlen 9471 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) | |
| 13 | 3, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) |
| 14 | nn0lt10b 9473 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
| 15 | 14 | biimpa 296 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
| 16 | 15 | orcd 735 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| 17 | 16 | ex 115 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 18 | 13, 17 | sylbird 170 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 19 | 18 | expd 258 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 20 | 10, 19 | syl7bi 165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 21 | 9, 20 | sylbid 150 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 22 | 21 | imp 124 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 23 | zdceq 9468 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
| 24 | 3, 11, 23 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → DECID 𝑁 = 1) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → DECID 𝑁 = 1) |
| 26 | dcne 2388 | . . 3 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1)) | |
| 27 | 25, 26 | sylib 122 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
| 28 | 2, 22, 27 | mpjaod 720 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4051 (class class class)co 5957 0cc0 7945 1c1 7946 < clt 8127 ≤ cle 8128 − cmin 8263 2c2 9107 ℕ0cn0 9315 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |