| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0lt2 | GIF version | ||
| Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| nn0lt2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 716 | . . 3 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
| 2 | 1 | a1i 9 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 3 | nn0z 9462 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 4 | 2z 9470 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 5 | zltlem1 9500 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
| 6 | 3, 4, 5 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
| 7 | 2m1e1 9224 | . . . . . 6 ⊢ (2 − 1) = 1 | |
| 8 | 7 | breq2i 4090 | . . . . 5 ⊢ (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1) |
| 9 | 6, 8 | bitrdi 196 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
| 10 | necom 2484 | . . . . 5 ⊢ (𝑁 ≠ 1 ↔ 1 ≠ 𝑁) | |
| 11 | 1z 9468 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
| 12 | zltlen 9521 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) | |
| 13 | 3, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) |
| 14 | nn0lt10b 9523 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
| 15 | 14 | biimpa 296 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
| 16 | 15 | orcd 738 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| 17 | 16 | ex 115 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 18 | 13, 17 | sylbird 170 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 19 | 18 | expd 258 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 20 | 10, 19 | syl7bi 165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 21 | 9, 20 | sylbid 150 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
| 22 | 21 | imp 124 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
| 23 | zdceq 9518 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
| 24 | 3, 11, 23 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → DECID 𝑁 = 1) |
| 25 | 24 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → DECID 𝑁 = 1) |
| 26 | dcne 2411 | . . 3 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1)) | |
| 27 | 25, 26 | sylib 122 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
| 28 | 2, 22, 27 | mpjaod 723 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 (class class class)co 6000 0cc0 7995 1c1 7996 < clt 8177 ≤ cle 8178 − cmin 8313 2c2 9157 ℕ0cn0 9365 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |