![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nn0lt2 | GIF version |
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
Ref | Expression |
---|---|
nn0lt2 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 712 | . . 3 ⊢ (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)) | |
2 | 1 | a1i 9 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
3 | nn0z 9337 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
4 | 2z 9345 | . . . . . 6 ⊢ 2 ∈ ℤ | |
5 | zltlem1 9374 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) | |
6 | 3, 4, 5 | sylancl 413 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1))) |
7 | 2m1e1 9100 | . . . . . 6 ⊢ (2 − 1) = 1 | |
8 | 7 | breq2i 4037 | . . . . 5 ⊢ (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1) |
9 | 6, 8 | bitrdi 196 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1)) |
10 | necom 2448 | . . . . 5 ⊢ (𝑁 ≠ 1 ↔ 1 ≠ 𝑁) | |
11 | 1z 9343 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
12 | zltlen 9395 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) | |
13 | 3, 11, 12 | sylancl 413 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁))) |
14 | nn0lt10b 9397 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0)) | |
15 | 14 | biimpa 296 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → 𝑁 = 0) |
16 | 15 | orcd 734 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1)) |
17 | 16 | ex 115 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
18 | 13, 17 | sylbird 170 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))) |
19 | 18 | expd 258 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
20 | 10, 19 | syl7bi 165 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
21 | 9, 20 | sylbid 150 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))) |
22 | 21 | imp 124 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))) |
23 | zdceq 9392 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1) | |
24 | 3, 11, 23 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → DECID 𝑁 = 1) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → DECID 𝑁 = 1) |
26 | dcne 2375 | . . 3 ⊢ (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1)) | |
27 | 25, 26 | sylib 122 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1)) |
28 | 2, 22, 27 | mpjaod 719 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 class class class wbr 4029 (class class class)co 5918 0cc0 7872 1c1 7873 < clt 8054 ≤ cle 8055 − cmin 8190 2c2 9033 ℕ0cn0 9240 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |