ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 GIF version

Theorem nn0lt2 9524
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 716 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1i 9 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 9462 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 9470 . . . . . 6 2 ∈ ℤ
5 zltlem1 9500 . . . . . 6 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 413 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 9224 . . . . . 6 (2 − 1) = 1
87breq2i 4090 . . . . 5 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8bitrdi 196 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2484 . . . . 5 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 1z 9468 . . . . . . . 8 1 ∈ ℤ
12 zltlen 9521 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
133, 11, 12sylancl 413 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
14 nn0lt10b 9523 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1514biimpa 296 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1615orcd 738 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1716ex 115 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1813, 17sylbird 170 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
1918expd 258 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2010, 19syl7bi 165 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
219, 20sylbid 150 . . 3 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2221imp 124 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
23 zdceq 9518 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
243, 11, 23sylancl 413 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
2524adantr 276 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → DECID 𝑁 = 1)
26 dcne 2411 . . 3 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1))
2725, 26sylib 122 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1))
282, 22, 27mpjaod 723 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400   class class class wbr 4082  (class class class)co 6000  0cc0 7995  1c1 7996   < clt 8177  cle 8178  cmin 8313  2c2 9157  0cn0 9365  cz 9442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator