Step | Hyp | Ref
| Expression |
1 | | bj-nn0suc 13999 |
. . . . 5
⊢ (𝑧 ∈ ω ↔ (𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦)) |
2 | | pm3.21 262 |
. . . . . . . 8
⊢ (𝜓 → (𝑧 = ∅ → (𝑧 = ∅ ∧ 𝜓))) |
3 | 2 | ad2antrr 485 |
. . . . . . 7
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (𝑧 = ∅ → (𝑧 = ∅ ∧ 𝜓))) |
4 | | pm2.04 82 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑧 → (𝑦 ∈ ω → 𝜒)) → (𝑦 ∈ ω → (𝑦 ∈ 𝑧 → 𝜒))) |
5 | 4 | ralimi2 2530 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑧 (𝑦 ∈ ω → 𝜒) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒)) |
6 | | imim2 55 |
. . . . . . . . . . . 12
⊢ ((𝜒 → 𝜃) → ((𝑦 ∈ 𝑧 → 𝜒) → (𝑦 ∈ 𝑧 → 𝜃))) |
7 | 6 | ral2imi 2535 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
ω (𝜒 → 𝜃) → (∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃))) |
8 | 7 | imp 123 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒)) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃)) |
9 | 5, 8 | sylan2 284 |
. . . . . . . . 9
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃)) |
10 | | r19.29 2607 |
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) ∧ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω ((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦)) |
11 | | vex 2733 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
12 | 11 | sucid 4402 |
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ suc 𝑦 |
13 | | eleq2 2234 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦)) |
14 | 12, 13 | mpbiri 167 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = suc 𝑦 → 𝑦 ∈ 𝑧) |
15 | | ax-1 6 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝑧 → 𝜃) → 𝑧 = suc 𝑦)) |
16 | | pm2.27 40 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑧 → ((𝑦 ∈ 𝑧 → 𝜃) → 𝜃)) |
17 | 15, 16 | anim12ii 341 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = suc 𝑦 ∧ 𝑦 ∈ 𝑧) → ((𝑦 ∈ 𝑧 → 𝜃) → (𝑧 = suc 𝑦 ∧ 𝜃))) |
18 | 14, 17 | mpdan 419 |
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝑧 → 𝜃) → (𝑧 = suc 𝑦 ∧ 𝜃))) |
19 | 18 | impcom 124 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦) → (𝑧 = suc 𝑦 ∧ 𝜃)) |
20 | 19 | reximi 2567 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
ω ((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) |
21 | 10, 20 | syl 14 |
. . . . . . . . . 10
⊢
((∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) ∧ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) |
22 | 21 | ex 114 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) |
23 | 9, 22 | syl 14 |
. . . . . . . 8
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) |
24 | 23 | adantll 473 |
. . . . . . 7
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) |
25 | 3, 24 | orim12d 781 |
. . . . . 6
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → ((𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)))) |
26 | 25 | ex 114 |
. . . . 5
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → ((𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) |
27 | 1, 26 | syl7bi 164 |
. . . 4
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) |
28 | 27 | alrimiv 1867 |
. . 3
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑧(∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) |
29 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑥 𝑦 ∈ ω |
30 | | bj-findis.nf1 |
. . . . 5
⊢
Ⅎ𝑥𝜒 |
31 | 29, 30 | nfim 1565 |
. . . 4
⊢
Ⅎ𝑥(𝑦 ∈ ω → 𝜒) |
32 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ ω |
33 | | nfv 1521 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = ∅ |
34 | | bj-findis.nf0 |
. . . . . . 7
⊢
Ⅎ𝑥𝜓 |
35 | 33, 34 | nfan 1558 |
. . . . . 6
⊢
Ⅎ𝑥(𝑧 = ∅ ∧ 𝜓) |
36 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑥ω |
37 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 = suc 𝑦 |
38 | | bj-findis.nfsuc |
. . . . . . . 8
⊢
Ⅎ𝑥𝜃 |
39 | 37, 38 | nfan 1558 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 = suc 𝑦 ∧ 𝜃) |
40 | 36, 39 | nfrexxy 2509 |
. . . . . 6
⊢
Ⅎ𝑥∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃) |
41 | 35, 40 | nfor 1567 |
. . . . 5
⊢
Ⅎ𝑥((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) |
42 | 32, 41 | nfim 1565 |
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) |
43 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ ω → 𝜑) |
44 | | nfv 1521 |
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ ω → 𝜒) |
45 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) |
46 | 45 | biimprd 157 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑦 ∈ ω → 𝑥 ∈ ω)) |
47 | | bj-findis.1 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) |
48 | 46, 47 | imim12d 74 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → 𝜑) → (𝑦 ∈ ω → 𝜒))) |
49 | | eleq1 2233 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ω ↔ 𝑧 ∈ ω)) |
50 | 49 | biimpd 143 |
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ω → 𝑧 ∈ ω)) |
51 | | eqtr 2188 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = ∅) → 𝑥 = ∅) |
52 | | bj-findis.0 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) |
53 | 51, 52 | syl 14 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = ∅) → (𝜓 → 𝜑)) |
54 | 53 | expimpd 361 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑧 = ∅ ∧ 𝜓) → 𝜑)) |
55 | | eqtr 2188 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = suc 𝑦) → 𝑥 = suc 𝑦) |
56 | | bj-findis.suc |
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) |
57 | 55, 56 | syl 14 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = suc 𝑦) → (𝜃 → 𝜑)) |
58 | 57 | expimpd 361 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑧 = suc 𝑦 ∧ 𝜃) → 𝜑)) |
59 | 58 | rexlimdvw 2591 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃) → 𝜑)) |
60 | 54, 59 | jaod 712 |
. . . . 5
⊢ (𝑥 = 𝑧 → (((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) → 𝜑)) |
61 | 50, 60 | imim12d 74 |
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) → (𝑥 ∈ ω → 𝜑))) |
62 | 31, 42, 43, 44, 48, 61 | setindis 14002 |
. . 3
⊢
(∀𝑧(∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)))) → ∀𝑥(𝑥 ∈ ω → 𝜑)) |
63 | 28, 62 | syl 14 |
. 2
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥(𝑥 ∈ ω → 𝜑)) |
64 | | df-ral 2453 |
. 2
⊢
(∀𝑥 ∈
ω 𝜑 ↔
∀𝑥(𝑥 ∈ ω → 𝜑)) |
65 | 63, 64 | sylibr 133 |
1
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |