| Step | Hyp | Ref
 | Expression | 
| 1 |   | bj-nn0suc 15610 | 
. . . . 5
⊢ (𝑧 ∈ ω ↔ (𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦)) | 
| 2 |   | pm3.21 264 | 
. . . . . . . 8
⊢ (𝜓 → (𝑧 = ∅ → (𝑧 = ∅ ∧ 𝜓))) | 
| 3 | 2 | ad2antrr 488 | 
. . . . . . 7
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (𝑧 = ∅ → (𝑧 = ∅ ∧ 𝜓))) | 
| 4 |   | pm2.04 82 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑧 → (𝑦 ∈ ω → 𝜒)) → (𝑦 ∈ ω → (𝑦 ∈ 𝑧 → 𝜒))) | 
| 5 | 4 | ralimi2 2557 | 
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑧 (𝑦 ∈ ω → 𝜒) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒)) | 
| 6 |   | imim2 55 | 
. . . . . . . . . . . 12
⊢ ((𝜒 → 𝜃) → ((𝑦 ∈ 𝑧 → 𝜒) → (𝑦 ∈ 𝑧 → 𝜃))) | 
| 7 | 6 | ral2imi 2562 | 
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
ω (𝜒 → 𝜃) → (∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃))) | 
| 8 | 7 | imp 124 | 
. . . . . . . . . 10
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜒)) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃)) | 
| 9 | 5, 8 | sylan2 286 | 
. . . . . . . . 9
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → ∀𝑦 ∈ ω (𝑦 ∈ 𝑧 → 𝜃)) | 
| 10 |   | r19.29 2634 | 
. . . . . . . . . . 11
⊢
((∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) ∧ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω ((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦)) | 
| 11 |   | vex 2766 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V | 
| 12 | 11 | sucid 4452 | 
. . . . . . . . . . . . . . 15
⊢ 𝑦 ∈ suc 𝑦 | 
| 13 |   | eleq2 2260 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ suc 𝑦)) | 
| 14 | 12, 13 | mpbiri 168 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = suc 𝑦 → 𝑦 ∈ 𝑧) | 
| 15 |   | ax-1 6 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝑧 → 𝜃) → 𝑧 = suc 𝑦)) | 
| 16 |   | pm2.27 40 | 
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑧 → ((𝑦 ∈ 𝑧 → 𝜃) → 𝜃)) | 
| 17 | 15, 16 | anim12ii 343 | 
. . . . . . . . . . . . . 14
⊢ ((𝑧 = suc 𝑦 ∧ 𝑦 ∈ 𝑧) → ((𝑦 ∈ 𝑧 → 𝜃) → (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 18 | 14, 17 | mpdan 421 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = suc 𝑦 → ((𝑦 ∈ 𝑧 → 𝜃) → (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 19 | 18 | impcom 125 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦) → (𝑧 = suc 𝑦 ∧ 𝜃)) | 
| 20 | 19 | reximi 2594 | 
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
ω ((𝑦 ∈ 𝑧 → 𝜃) ∧ 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) | 
| 21 | 10, 20 | syl 14 | 
. . . . . . . . . 10
⊢
((∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) ∧ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) | 
| 22 | 21 | ex 115 | 
. . . . . . . . 9
⊢
(∀𝑦 ∈
ω (𝑦 ∈ 𝑧 → 𝜃) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 23 | 9, 22 | syl 14 | 
. . . . . . . 8
⊢
((∀𝑦 ∈
ω (𝜒 → 𝜃) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 24 | 23 | adantll 476 | 
. . . . . . 7
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → (∃𝑦 ∈ ω 𝑧 = suc 𝑦 → ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 25 | 3, 24 | orim12d 787 | 
. . . . . 6
⊢ (((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) ∧ ∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒)) → ((𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)))) | 
| 26 | 25 | ex 115 | 
. . . . 5
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → ((𝑧 = ∅ ∨ ∃𝑦 ∈ ω 𝑧 = suc 𝑦) → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) | 
| 27 | 1, 26 | syl7bi 165 | 
. . . 4
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) | 
| 28 | 27 | alrimiv 1888 | 
. . 3
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑧(∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))))) | 
| 29 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 𝑦 ∈ ω | 
| 30 |   | bj-findis.nf1 | 
. . . . 5
⊢
Ⅎ𝑥𝜒 | 
| 31 | 29, 30 | nfim 1586 | 
. . . 4
⊢
Ⅎ𝑥(𝑦 ∈ ω → 𝜒) | 
| 32 |   | nfv 1542 | 
. . . . 5
⊢
Ⅎ𝑥 𝑧 ∈ ω | 
| 33 |   | nfv 1542 | 
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 = ∅ | 
| 34 |   | bj-findis.nf0 | 
. . . . . . 7
⊢
Ⅎ𝑥𝜓 | 
| 35 | 33, 34 | nfan 1579 | 
. . . . . 6
⊢
Ⅎ𝑥(𝑧 = ∅ ∧ 𝜓) | 
| 36 |   | nfcv 2339 | 
. . . . . . 7
⊢
Ⅎ𝑥ω | 
| 37 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 = suc 𝑦 | 
| 38 |   | bj-findis.nfsuc | 
. . . . . . . 8
⊢
Ⅎ𝑥𝜃 | 
| 39 | 37, 38 | nfan 1579 | 
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 = suc 𝑦 ∧ 𝜃) | 
| 40 | 36, 39 | nfrexw 2536 | 
. . . . . 6
⊢
Ⅎ𝑥∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃) | 
| 41 | 35, 40 | nfor 1588 | 
. . . . 5
⊢
Ⅎ𝑥((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) | 
| 42 | 32, 41 | nfim 1586 | 
. . . 4
⊢
Ⅎ𝑥(𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) | 
| 43 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑧(𝑥 ∈ ω → 𝜑) | 
| 44 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑧(𝑦 ∈ ω → 𝜒) | 
| 45 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω)) | 
| 46 | 45 | biimprd 158 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑦 ∈ ω → 𝑥 ∈ ω)) | 
| 47 |   | bj-findis.1 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) | 
| 48 | 46, 47 | imim12d 74 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ω → 𝜑) → (𝑦 ∈ ω → 𝜒))) | 
| 49 |   | eleq1 2259 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ω ↔ 𝑧 ∈ ω)) | 
| 50 | 49 | biimpd 144 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (𝑥 ∈ ω → 𝑧 ∈ ω)) | 
| 51 |   | eqtr 2214 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = ∅) → 𝑥 = ∅) | 
| 52 |   | bj-findis.0 | 
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) | 
| 53 | 51, 52 | syl 14 | 
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = ∅) → (𝜓 → 𝜑)) | 
| 54 | 53 | expimpd 363 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝑧 = ∅ ∧ 𝜓) → 𝜑)) | 
| 55 |   | eqtr 2214 | 
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = suc 𝑦) → 𝑥 = suc 𝑦) | 
| 56 |   | bj-findis.suc | 
. . . . . . . . 9
⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) | 
| 57 | 55, 56 | syl 14 | 
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑧 = suc 𝑦) → (𝜃 → 𝜑)) | 
| 58 | 57 | expimpd 363 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑧 = suc 𝑦 ∧ 𝜃) → 𝜑)) | 
| 59 | 58 | rexlimdvw 2618 | 
. . . . . 6
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃) → 𝜑)) | 
| 60 | 54, 59 | jaod 718 | 
. . . . 5
⊢ (𝑥 = 𝑧 → (((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)) → 𝜑)) | 
| 61 | 50, 60 | imim12d 74 | 
. . . 4
⊢ (𝑥 = 𝑧 → ((𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃))) → (𝑥 ∈ ω → 𝜑))) | 
| 62 | 31, 42, 43, 44, 48, 61 | setindis 15613 | 
. . 3
⊢
(∀𝑧(∀𝑦 ∈ 𝑧 (𝑦 ∈ ω → 𝜒) → (𝑧 ∈ ω → ((𝑧 = ∅ ∧ 𝜓) ∨ ∃𝑦 ∈ ω (𝑧 = suc 𝑦 ∧ 𝜃)))) → ∀𝑥(𝑥 ∈ ω → 𝜑)) | 
| 63 | 28, 62 | syl 14 | 
. 2
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥(𝑥 ∈ ω → 𝜑)) | 
| 64 |   | df-ral 2480 | 
. 2
⊢
(∀𝑥 ∈
ω 𝜑 ↔
∀𝑥(𝑥 ∈ ω → 𝜑)) | 
| 65 | 63, 64 | sylibr 134 | 
1
⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) |