Proof of Theorem fzofzim
| Step | Hyp | Ref
| Expression |
| 1 | | elfz2nn0 10204 |
. . . 4
⊢ (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0
∧ 𝐾 ≤ 𝑀)) |
| 2 | | simpl1 1002 |
. . . . . 6
⊢ (((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) ∧ 𝐾 ≠ 𝑀) → 𝐾 ∈
ℕ0) |
| 3 | | necom 2451 |
. . . . . . . . 9
⊢ (𝐾 ≠ 𝑀 ↔ 𝑀 ≠ 𝐾) |
| 4 | | nn0z 9363 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ0
→ 𝐾 ∈
ℤ) |
| 5 | | nn0z 9363 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
| 6 | | zltlen 9421 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ (𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾))) |
| 7 | 4, 5, 6 | syl2an 289 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝐾 < 𝑀 ↔ (𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾))) |
| 8 | 7 | bicomd 141 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → ((𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾) ↔ 𝐾 < 𝑀)) |
| 9 | | elnn0z 9356 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ ℕ0
↔ (𝐾 ∈ ℤ
∧ 0 ≤ 𝐾)) |
| 10 | | 0red 8044 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 0 ∈ ℝ) |
| 11 | | zre 9347 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℝ) |
| 12 | 11 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝐾 ∈
ℝ) |
| 13 | | nn0re 9275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 14 | 13 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑀 ∈
ℝ) |
| 15 | | lelttr 8132 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ 𝐾
∈ ℝ ∧ 𝑀
∈ ℝ) → ((0 ≤ 𝐾 ∧ 𝐾 < 𝑀) → 0 < 𝑀)) |
| 16 | 10, 12, 14, 15 | syl3anc 1249 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((0 ≤ 𝐾 ∧
𝐾 < 𝑀) → 0 < 𝑀)) |
| 17 | | elnnz 9353 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 <
𝑀)) |
| 18 | 17 | simplbi2 385 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℤ → (0 <
𝑀 → 𝑀 ∈ ℕ)) |
| 19 | 5, 18 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ0
→ (0 < 𝑀 →
𝑀 ∈
ℕ)) |
| 20 | 19 | adantl 277 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 < 𝑀 →
𝑀 ∈
ℕ)) |
| 21 | 16, 20 | syld 45 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((0 ≤ 𝐾 ∧
𝐾 < 𝑀) → 𝑀 ∈ ℕ)) |
| 22 | 21 | expd 258 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (0 ≤ 𝐾 →
(𝐾 < 𝑀 → 𝑀 ∈ ℕ))) |
| 23 | 22 | impancom 260 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ ℤ ∧ 0 ≤
𝐾) → (𝑀 ∈ ℕ0
→ (𝐾 < 𝑀 → 𝑀 ∈ ℕ))) |
| 24 | 9, 23 | sylbi 121 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℕ0
→ (𝑀 ∈
ℕ0 → (𝐾 < 𝑀 → 𝑀 ∈ ℕ))) |
| 25 | 24 | imp 124 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝐾 < 𝑀 → 𝑀 ∈ ℕ)) |
| 26 | 8, 25 | sylbid 150 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → ((𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾) → 𝑀 ∈ ℕ)) |
| 27 | 26 | expd 258 |
. . . . . . . . 9
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝐾 ≤ 𝑀 → (𝑀 ≠ 𝐾 → 𝑀 ∈ ℕ))) |
| 28 | 3, 27 | syl7bi 165 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝐾 ≤ 𝑀 → (𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ))) |
| 29 | 28 | 3impia 1202 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) → (𝐾 ≠ 𝑀 → 𝑀 ∈ ℕ)) |
| 30 | 29 | imp 124 |
. . . . . 6
⊢ (((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) ∧ 𝐾 ≠ 𝑀) → 𝑀 ∈ ℕ) |
| 31 | 8 | biimpd 144 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → ((𝐾 ≤ 𝑀 ∧ 𝑀 ≠ 𝐾) → 𝐾 < 𝑀)) |
| 32 | 31 | exp4b 367 |
. . . . . . . . 9
⊢ (𝐾 ∈ ℕ0
→ (𝑀 ∈
ℕ0 → (𝐾 ≤ 𝑀 → (𝑀 ≠ 𝐾 → 𝐾 < 𝑀)))) |
| 33 | 32 | 3imp 1195 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) → (𝑀 ≠ 𝐾 → 𝐾 < 𝑀)) |
| 34 | 3, 33 | biimtrid 152 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) → (𝐾 ≠ 𝑀 → 𝐾 < 𝑀)) |
| 35 | 34 | imp 124 |
. . . . . 6
⊢ (((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) ∧ 𝐾 ≠ 𝑀) → 𝐾 < 𝑀) |
| 36 | 2, 30, 35 | 3jca 1179 |
. . . . 5
⊢ (((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) ∧ 𝐾 ≠ 𝑀) → (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)) |
| 37 | 36 | ex 115 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝑀 ∈
ℕ0 ∧ 𝐾
≤ 𝑀) → (𝐾 ≠ 𝑀 → (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))) |
| 38 | 1, 37 | sylbi 121 |
. . 3
⊢ (𝐾 ∈ (0...𝑀) → (𝐾 ≠ 𝑀 → (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))) |
| 39 | 38 | impcom 125 |
. 2
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)) |
| 40 | | elfzo0 10275 |
. 2
⊢ (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)) |
| 41 | 39, 40 | sylibr 134 |
1
⊢ ((𝐾 ≠ 𝑀 ∧ 𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀)) |