ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzim GIF version

Theorem fzofzim 10293
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 10216 . . . 4 (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀))
2 simpl1 1002 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 ∈ ℕ0)
3 necom 2459 . . . . . . . . 9 (𝐾𝑀𝑀𝐾)
4 nn0z 9374 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 nn0z 9374 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
6 zltlen 9433 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
74, 5, 6syl2an 289 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
87bicomd 141 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) ↔ 𝐾 < 𝑀))
9 elnn0z 9367 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
10 0red 8055 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
11 zre 9358 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 276 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
13 nn0re 9286 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1413adantl 277 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
15 lelttr 8143 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
1610, 12, 14, 15syl3anc 1249 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
17 elnnz 9364 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1817simplbi2 385 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
195, 18syl 14 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (0 < 𝑀𝑀 ∈ ℕ))
2019adantl 277 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 < 𝑀𝑀 ∈ ℕ))
2116, 20syld 45 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 𝑀 ∈ ℕ))
2221expd 258 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝐾 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2322impancom 260 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
249, 23sylbi 121 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2524imp 124 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀𝑀 ∈ ℕ))
268, 25sylbid 150 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝑀 ∈ ℕ))
2726expd 258 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝑀𝐾𝑀 ∈ ℕ)))
283, 27syl7bi 165 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝐾𝑀𝑀 ∈ ℕ)))
29283impia 1202 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝑀 ∈ ℕ))
3029imp 124 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝑀 ∈ ℕ)
318biimpd 144 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝐾 < 𝑀))
3231exp4b 367 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → (𝑀𝐾𝐾 < 𝑀))))
33323imp 1195 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝑀𝐾𝐾 < 𝑀))
343, 33biimtrid 152 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝐾 < 𝑀))
3534imp 124 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 < 𝑀)
362, 30, 353jca 1179 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
3736ex 115 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
381, 37sylbi 121 . . 3 (𝐾 ∈ (0...𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
3938impcom 125 . 2 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
40 elfzo0 10287 . 2 (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
4139, 40sylibr 134 1 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2175  wne 2375   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   < clt 8089  cle 8090  cn 9018  0cn0 9277  cz 9354  ...cfz 10112  ..^cfzo 10246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-fz 10113  df-fzo 10247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator