ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzofzim GIF version

Theorem fzofzim 9996
Description: If a nonnegative integer in a finite interval of integers is not the upper bound of the interval, it is contained in the corresponding half-open integer range. (Contributed by Alexander van der Vekens, 15-Jun-2018.)
Assertion
Ref Expression
fzofzim ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))

Proof of Theorem fzofzim
StepHypRef Expression
1 elfz2nn0 9923 . . . 4 (𝐾 ∈ (0...𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀))
2 simpl1 985 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 ∈ ℕ0)
3 necom 2393 . . . . . . . . 9 (𝐾𝑀𝑀𝐾)
4 nn0z 9098 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
5 nn0z 9098 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
6 zltlen 9153 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
74, 5, 6syl2an 287 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀 ↔ (𝐾𝑀𝑀𝐾)))
87bicomd 140 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) ↔ 𝐾 < 𝑀))
9 elnn0z 9091 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
10 0red 7791 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 0 ∈ ℝ)
11 zre 9082 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 274 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
13 nn0re 9010 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1413adantl 275 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
15 lelttr 7876 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
1610, 12, 14, 15syl3anc 1217 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 0 < 𝑀))
17 elnnz 9088 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 0 < 𝑀))
1817simplbi2 383 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (0 < 𝑀𝑀 ∈ ℕ))
195, 18syl 14 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (0 < 𝑀𝑀 ∈ ℕ))
2019adantl 275 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 < 𝑀𝑀 ∈ ℕ))
2116, 20syld 45 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((0 ≤ 𝐾𝐾 < 𝑀) → 𝑀 ∈ ℕ))
2221expd 256 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝐾 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2322impancom 258 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
249, 23sylbi 120 . . . . . . . . . . . 12 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 < 𝑀𝑀 ∈ ℕ)))
2524imp 123 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 < 𝑀𝑀 ∈ ℕ))
268, 25sylbid 149 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝑀 ∈ ℕ))
2726expd 256 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝑀𝐾𝑀 ∈ ℕ)))
283, 27syl7bi 164 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾𝑀 → (𝐾𝑀𝑀 ∈ ℕ)))
29283impia 1179 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝑀 ∈ ℕ))
3029imp 123 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝑀 ∈ ℕ)
318biimpd 143 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝐾𝑀𝑀𝐾) → 𝐾 < 𝑀))
3231exp4b 365 . . . . . . . . 9 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾𝑀 → (𝑀𝐾𝐾 < 𝑀))))
33323imp 1176 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝑀𝐾𝐾 < 𝑀))
343, 33syl5bi 151 . . . . . . 7 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀𝐾 < 𝑀))
3534imp 123 . . . . . 6 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → 𝐾 < 𝑀)
362, 30, 353jca 1162 . . . . 5 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) ∧ 𝐾𝑀) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
3736ex 114 . . . 4 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0𝐾𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
381, 37sylbi 120 . . 3 (𝐾 ∈ (0...𝑀) → (𝐾𝑀 → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀)))
3938impcom 124 . 2 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
40 elfzo0 9990 . 2 (𝐾 ∈ (0..^𝑀) ↔ (𝐾 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐾 < 𝑀))
4139, 40sylibr 133 1 ((𝐾𝑀𝐾 ∈ (0...𝑀)) → 𝐾 ∈ (0..^𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963  wcel 1481  wne 2309   class class class wbr 3937  (class class class)co 5782  cr 7643  0cc0 7644   < clt 7824  cle 7825  cn 8744  0cn0 9001  cz 9078  ...cfz 9821  ..^cfzo 9950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-fzo 9951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator