Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bir | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
syl6bir.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bir | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bir.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistrfor 1777 cbvexdh 1903 repizf2 4118 issref 4961 fnun 5269 ovigg 5931 tfrlem9 6256 tfri3 6304 ordge1n0im 6373 nntri3or 6429 updjud 7012 axprecex 7779 peano5nnnn 7791 peano5nni 8815 zeo 9248 nn0ind-raph 9260 fzm1 9980 fzind2 10116 fzfig 10307 bcpasc 10617 climrecvg1n 11222 oddnn02np1 11744 oddge22np1 11745 evennn02n 11746 evennn2n 11747 gcdaddm 11840 coprmdvds1 11940 qredeq 11945 fiinopn 12349 bj-intabssel 13309 triap 13549 |
Copyright terms: Public domain | W3C validator |