Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bir | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
syl6bir.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bir | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bir.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistrfor 1793 cbvexdh 1919 repizf2 4148 issref 4993 fnun 5304 ovigg 5973 tfrlem9 6298 tfri3 6346 ordge1n0im 6415 nntri3or 6472 updjud 7059 axprecex 7842 peano5nnnn 7854 peano5nni 8881 zeo 9317 nn0ind-raph 9329 fzm1 10056 fzind2 10195 fzfig 10386 bcpasc 10700 climrecvg1n 11311 oddnn02np1 11839 oddge22np1 11840 evennn02n 11841 evennn2n 11842 gcdaddm 11939 coprmdvds1 12045 qredeq 12050 fiinopn 12796 zabsle1 13694 bj-intabssel 13824 triap 14061 |
Copyright terms: Public domain | W3C validator |