ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6bir GIF version

Theorem syl6bir 163
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
syl6bir.1 (𝜑 → (𝜒𝜓))
syl6bir.2 (𝜒𝜃)
Assertion
Ref Expression
syl6bir (𝜑 → (𝜓𝜃))

Proof of Theorem syl6bir
StepHypRef Expression
1 syl6bir.1 . . 3 (𝜑 → (𝜒𝜓))
21biimprd 157 . 2 (𝜑 → (𝜓𝜒))
3 syl6bir.2 . 2 (𝜒𝜃)
42, 3syl6 33 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrfor  1752  cbvexdh  1874  repizf2  4044  issref  4877  fnun  5185  ovigg  5843  tfrlem9  6168  tfri3  6216  ordge1n0im  6285  nntri3or  6341  updjud  6917  axprecex  7609  peano5nnnn  7621  peano5nni  8627  zeo  9054  nn0ind-raph  9066  fzm1  9767  fzind2  9903  fzfig  10090  bcpasc  10399  climrecvg1n  11003  oddnn02np1  11419  oddge22np1  11420  evennn02n  11421  evennn2n  11422  gcdaddm  11514  coprmdvds1  11612  qredeq  11617  fiinopn  12008  bj-intabssel  12679  triap  12905
  Copyright terms: Public domain W3C validator