![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bir | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
syl6bir.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bir | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bir.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistrfor 1752 cbvexdh 1874 repizf2 4044 issref 4877 fnun 5185 ovigg 5843 tfrlem9 6168 tfri3 6216 ordge1n0im 6285 nntri3or 6341 updjud 6917 axprecex 7609 peano5nnnn 7621 peano5nni 8627 zeo 9054 nn0ind-raph 9066 fzm1 9767 fzind2 9903 fzfig 10090 bcpasc 10399 climrecvg1n 11003 oddnn02np1 11419 oddge22np1 11420 evennn02n 11421 evennn2n 11422 gcdaddm 11514 coprmdvds1 11612 qredeq 11617 fiinopn 12008 bj-intabssel 12679 triap 12905 |
Copyright terms: Public domain | W3C validator |