Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl6bir | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
syl6bir.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6bir | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) | |
2 | 1 | biimprd 157 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | syl6bir.2 | . 2 ⊢ (𝜒 → 𝜃) | |
4 | 2, 3 | syl6 33 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: exdistrfor 1788 cbvexdh 1914 repizf2 4141 issref 4986 fnun 5294 ovigg 5962 tfrlem9 6287 tfri3 6335 ordge1n0im 6404 nntri3or 6461 updjud 7047 axprecex 7821 peano5nnnn 7833 peano5nni 8860 zeo 9296 nn0ind-raph 9308 fzm1 10035 fzind2 10174 fzfig 10365 bcpasc 10679 climrecvg1n 11289 oddnn02np1 11817 oddge22np1 11818 evennn02n 11819 evennn2n 11820 gcdaddm 11917 coprmdvds1 12023 qredeq 12028 fiinopn 12642 zabsle1 13540 bj-intabssel 13670 triap 13908 |
Copyright terms: Public domain | W3C validator |