ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6bir GIF version

Theorem syl6bir 163
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
syl6bir.1 (𝜑 → (𝜒𝜓))
syl6bir.2 (𝜒𝜃)
Assertion
Ref Expression
syl6bir (𝜑 → (𝜓𝜃))

Proof of Theorem syl6bir
StepHypRef Expression
1 syl6bir.1 . . 3 (𝜑 → (𝜒𝜓))
21biimprd 157 . 2 (𝜑 → (𝜓𝜒))
3 syl6bir.2 . 2 (𝜒𝜃)
42, 3syl6 33 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrfor  1777  cbvexdh  1903  repizf2  4118  issref  4961  fnun  5269  ovigg  5931  tfrlem9  6256  tfri3  6304  ordge1n0im  6373  nntri3or  6429  updjud  7012  axprecex  7779  peano5nnnn  7791  peano5nni  8815  zeo  9248  nn0ind-raph  9260  fzm1  9980  fzind2  10116  fzfig  10307  bcpasc  10617  climrecvg1n  11222  oddnn02np1  11744  oddge22np1  11745  evennn02n  11746  evennn2n  11747  gcdaddm  11840  coprmdvds1  11940  qredeq  11945  fiinopn  12349  bj-intabssel  13309  triap  13549
  Copyright terms: Public domain W3C validator