ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlo GIF version

Theorem prarloclemlo 7484
Description: Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7493. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlo (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐿   𝑦,𝑃   𝑦,𝑈   𝑦,𝑋

Proof of Theorem prarloclemlo
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaass 6480 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 +o 𝑔) +o ) = (𝑓 +o (𝑔 +o )))
21adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 +o 𝑔) +o ) = (𝑓 +o (𝑔 +o )))
3 simpr 110 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
4 1onn 6515 . . . . . . . . . . . . . 14 1o ∈ ω
5 nnacl 6475 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 1o ∈ ω) → (𝑦 +o 1o) ∈ ω)
63, 4, 5sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ ω)
7 2onn 6516 . . . . . . . . . . . . . 14 2o ∈ ω
87a1i 9 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 2o ∈ ω)
9 simpll 527 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑋 ∈ ω)
102, 6, 8, 9caovassd 6028 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝑦 +o 1o) +o 2o) +o 𝑋) = ((𝑦 +o 1o) +o (2o +o 𝑋)))
114a1i 9 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 1o ∈ ω)
12 nnacom 6479 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 +o 𝑔) = (𝑔 +o 𝑓))
1312adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 +o 𝑔) = (𝑔 +o 𝑓))
14 nnacl 6475 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 +o 𝑔) ∈ ω)
1514adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 +o 𝑔) ∈ ω)
163, 8, 11, 13, 2, 9, 15caov4d 6053 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o (1o +o 𝑋)) = ((𝑦 +o 1o) +o (2o +o 𝑋)))
1713, 11, 9caovcomd 6025 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (1o +o 𝑋) = (𝑋 +o 1o))
18 nnon 4606 . . . . . . . . . . . . . . 15 (𝑋 ∈ ω → 𝑋 ∈ On)
19 oa1suc 6462 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → (𝑋 +o 1o) = suc 𝑋)
209, 18, 193syl 17 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑋 +o 1o) = suc 𝑋)
2117, 20eqtrd 2210 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (1o +o 𝑋) = suc 𝑋)
2221oveq2d 5885 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o (1o +o 𝑋)) = ((𝑦 +o 2o) +o suc 𝑋))
2310, 16, 223eqtr2rd 2217 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o suc 𝑋) = (((𝑦 +o 1o) +o 2o) +o 𝑋))
2423opeq1d 3782 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩ = ⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩)
2524eceq1d 6565 . . . . . . . . 9 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q = [⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q )
2625oveq1d 5884 . . . . . . . 8 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
2726oveq2d 5885 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
2827eleq1d 2246 . . . . . 6 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2928biimpd 144 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
30 simplr1 1039 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
31 simplr2 1040 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
32 elprnql 7471 . . . . . . . . . . . 12 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
3330, 31, 32syl2anc 411 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
34 1pi 7305 . . . . . . . . . . . . . 14 1oN
35 nnppipi 7333 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 1oN) → (𝑦 +o 1o) ∈ N)
363, 34, 35sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ N)
37 opelxpi 4655 . . . . . . . . . . . . . 14 (((𝑦 +o 1o) ∈ N ∧ 1oN) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
3834, 37mpan2 425 . . . . . . . . . . . . 13 ((𝑦 +o 1o) ∈ N → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
39 enqex 7350 . . . . . . . . . . . . . . 15 ~Q ∈ V
4039ecelqsi 6583 . . . . . . . . . . . . . 14 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 7338 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
4240, 41eleqtrrdi 2271 . . . . . . . . . . . . 13 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
4336, 38, 423syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
44 simplr3 1041 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
45 mulclnq 7366 . . . . . . . . . . . 12 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
4643, 44, 45syl2anc 411 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
47 nqnq0a 7444 . . . . . . . . . . 11 ((𝐴Q ∧ ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)))
4833, 46, 47syl2anc 411 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)))
49 nqnq0m 7445 . . . . . . . . . . . . 13 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
5043, 44, 49syl2anc 411 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
51 nqnq0pi 7428 . . . . . . . . . . . . . 14 (((𝑦 +o 1o) ∈ N ∧ 1oN) → [⟨(𝑦 +o 1o), 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q )
5236, 34, 51sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q )
5352oveq1d 5884 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
5450, 53eqtr4d 2213 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃))
5554oveq2d 5885 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
5648, 55eqtrd 2210 . . . . . . . . 9 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
5756eleq1d 2246 . . . . . . . 8 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
5857anbi1d 465 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
59 opeq1 3776 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 +o 1o) → ⟨𝑧, 1o⟩ = ⟨(𝑦 +o 1o), 1o⟩)
6059eceq1d 6565 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 +o 1o) → [⟨𝑧, 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q0 )
6160oveq1d 5884 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +o 1o) → ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃))
6261oveq2d 5885 . . . . . . . . . . . 12 (𝑧 = (𝑦 +o 1o) → (𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
6362eleq1d 2246 . . . . . . . . . . 11 (𝑧 = (𝑦 +o 1o) → ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
64 oveq1 5876 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 +o 1o) → (𝑧 +o 2o) = ((𝑦 +o 1o) +o 2o))
6564oveq1d 5884 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 +o 1o) → ((𝑧 +o 2o) +o 𝑋) = (((𝑦 +o 1o) +o 2o) +o 𝑋))
6665opeq1d 3782 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 +o 1o) → ⟨((𝑧 +o 2o) +o 𝑋), 1o⟩ = ⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩)
6766eceq1d 6565 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 +o 1o) → [⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q = [⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q )
6867oveq1d 5884 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +o 1o) → ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
6968oveq2d 5885 . . . . . . . . . . . 12 (𝑧 = (𝑦 +o 1o) → (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
7069eleq1d 2246 . . . . . . . . . . 11 (𝑧 = (𝑦 +o 1o) → ((𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7163, 70anbi12d 473 . . . . . . . . . 10 (𝑧 = (𝑦 +o 1o) → (((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271rspcev 2841 . . . . . . . . 9 (((𝑦 +o 1o) ∈ ω ∧ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7372ex 115 . . . . . . . 8 ((𝑦 +o 1o) ∈ ω → (((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
746, 73syl 14 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7558, 74sylbid 150 . . . . . 6 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
76 opeq1 3776 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨𝑧, 1o⟩ = ⟨𝑦, 1o⟩)
7776eceq1d 6565 . . . . . . . . . . 11 (𝑧 = 𝑦 → [⟨𝑧, 1o⟩] ~Q0 = [⟨𝑦, 1o⟩] ~Q0 )
7877oveq1d 5884 . . . . . . . . . 10 (𝑧 = 𝑦 → ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃))
7978oveq2d 5885 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)))
8079eleq1d 2246 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
81 oveq1 5876 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 +o 2o) = (𝑦 +o 2o))
8281oveq1d 5884 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧 +o 2o) +o 𝑋) = ((𝑦 +o 2o) +o 𝑋))
8382opeq1d 3782 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨((𝑧 +o 2o) +o 𝑋), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩)
8483eceq1d 6565 . . . . . . . . . . 11 (𝑧 = 𝑦 → [⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
8584oveq1d 5884 . . . . . . . . . 10 (𝑧 = 𝑦 → ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
8685oveq2d 5885 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
8786eleq1d 2246 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
8880, 87anbi12d 473 . . . . . . 7 (𝑧 = 𝑦 → (((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
8988cbvrexv 2704 . . . . . 6 (∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
9075, 89syl6ib 161 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9129, 90sylan2d 294 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9291expdimp 259 . . 3 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9392adantld 278 . 2 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿) → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9493ex 115 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wrex 2456  cop 3594  Oncon0 4360  suc csuc 4362  ωcom 4586   × cxp 4621  (class class class)co 5869  1oc1o 6404  2oc2o 6405   +o coa 6408  [cec 6527   / cqs 6528  Ncnpi 7262   ~Q ceq 7269  Qcnq 7270   +Q cplq 7272   ·Q cmq 7273   ~Q0 ceq0 7276   +Q0 cplq0 7279   ·Q0 cmq0 7280  Pcnp 7281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-enq0 7414  df-nq0 7415  df-plq0 7417  df-mq0 7418  df-inp 7456
This theorem is referenced by:  prarloclem3step  7486
  Copyright terms: Public domain W3C validator