ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlo GIF version

Theorem prarloclemlo 7554
Description: Contracting the lower side of an interval which straddles a Dedekind cut. Lemma for prarloc 7563. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlo (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐿   𝑦,𝑃   𝑦,𝑈   𝑦,𝑋

Proof of Theorem prarloclemlo
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnaass 6538 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 +o 𝑔) +o ) = (𝑓 +o (𝑔 +o )))
21adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 +o 𝑔) +o ) = (𝑓 +o (𝑔 +o )))
3 simpr 110 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
4 1onn 6573 . . . . . . . . . . . . . 14 1o ∈ ω
5 nnacl 6533 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 1o ∈ ω) → (𝑦 +o 1o) ∈ ω)
63, 4, 5sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ ω)
7 2onn 6574 . . . . . . . . . . . . . 14 2o ∈ ω
87a1i 9 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 2o ∈ ω)
9 simpll 527 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑋 ∈ ω)
102, 6, 8, 9caovassd 6078 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝑦 +o 1o) +o 2o) +o 𝑋) = ((𝑦 +o 1o) +o (2o +o 𝑋)))
114a1i 9 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 1o ∈ ω)
12 nnacom 6537 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 +o 𝑔) = (𝑔 +o 𝑓))
1312adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 +o 𝑔) = (𝑔 +o 𝑓))
14 nnacl 6533 . . . . . . . . . . . . . 14 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 +o 𝑔) ∈ ω)
1514adantl 277 . . . . . . . . . . . . 13 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 +o 𝑔) ∈ ω)
163, 8, 11, 13, 2, 9, 15caov4d 6103 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o (1o +o 𝑋)) = ((𝑦 +o 1o) +o (2o +o 𝑋)))
1713, 11, 9caovcomd 6075 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (1o +o 𝑋) = (𝑋 +o 1o))
18 nnon 4642 . . . . . . . . . . . . . . 15 (𝑋 ∈ ω → 𝑋 ∈ On)
19 oa1suc 6520 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → (𝑋 +o 1o) = suc 𝑋)
209, 18, 193syl 17 . . . . . . . . . . . . . 14 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑋 +o 1o) = suc 𝑋)
2117, 20eqtrd 2226 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (1o +o 𝑋) = suc 𝑋)
2221oveq2d 5934 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o (1o +o 𝑋)) = ((𝑦 +o 2o) +o suc 𝑋))
2310, 16, 223eqtr2rd 2233 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑦 +o 2o) +o suc 𝑋) = (((𝑦 +o 1o) +o 2o) +o 𝑋))
2423opeq1d 3810 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩ = ⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩)
2524eceq1d 6623 . . . . . . . . 9 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q = [⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q )
2625oveq1d 5933 . . . . . . . 8 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
2726oveq2d 5934 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
2827eleq1d 2262 . . . . . 6 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
2928biimpd 144 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
30 simplr1 1041 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
31 simplr2 1042 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
32 elprnql 7541 . . . . . . . . . . . 12 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
3330, 31, 32syl2anc 411 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
34 1pi 7375 . . . . . . . . . . . . . 14 1oN
35 nnppipi 7403 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 1oN) → (𝑦 +o 1o) ∈ N)
363, 34, 35sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑦 +o 1o) ∈ N)
37 opelxpi 4691 . . . . . . . . . . . . . 14 (((𝑦 +o 1o) ∈ N ∧ 1oN) → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
3834, 37mpan2 425 . . . . . . . . . . . . 13 ((𝑦 +o 1o) ∈ N → ⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N))
39 enqex 7420 . . . . . . . . . . . . . . 15 ~Q ∈ V
4039ecelqsi 6643 . . . . . . . . . . . . . 14 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~Q ∈ ((N × N) / ~Q ))
41 df-nqqs 7408 . . . . . . . . . . . . . 14 Q = ((N × N) / ~Q )
4240, 41eleqtrrdi 2287 . . . . . . . . . . . . 13 (⟨(𝑦 +o 1o), 1o⟩ ∈ (N × N) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
4336, 38, 423syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~QQ)
44 simplr3 1043 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
45 mulclnq 7436 . . . . . . . . . . . 12 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
4643, 44, 45syl2anc 411 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q)
47 nqnq0a 7514 . . . . . . . . . . 11 ((𝐴Q ∧ ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) ∈ Q) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)))
4833, 46, 47syl2anc 411 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)))
49 nqnq0m 7515 . . . . . . . . . . . . 13 (([⟨(𝑦 +o 1o), 1o⟩] ~QQ𝑃Q) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
5043, 44, 49syl2anc 411 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
51 nqnq0pi 7498 . . . . . . . . . . . . . 14 (((𝑦 +o 1o) ∈ N ∧ 1oN) → [⟨(𝑦 +o 1o), 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q )
5236, 34, 51sylancl 413 . . . . . . . . . . . . 13 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +o 1o), 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q )
5352oveq1d 5933 . . . . . . . . . . . 12 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q0 𝑃))
5450, 53eqtr4d 2229 . . . . . . . . . . 11 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃))
5554oveq2d 5934 . . . . . . . . . 10 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
5648, 55eqtrd 2226 . . . . . . . . 9 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
5756eleq1d 2262 . . . . . . . 8 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
5857anbi1d 465 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
59 opeq1 3804 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 +o 1o) → ⟨𝑧, 1o⟩ = ⟨(𝑦 +o 1o), 1o⟩)
6059eceq1d 6623 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 +o 1o) → [⟨𝑧, 1o⟩] ~Q0 = [⟨(𝑦 +o 1o), 1o⟩] ~Q0 )
6160oveq1d 5933 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +o 1o) → ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃))
6261oveq2d 5934 . . . . . . . . . . . 12 (𝑧 = (𝑦 +o 1o) → (𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)))
6362eleq1d 2262 . . . . . . . . . . 11 (𝑧 = (𝑦 +o 1o) → ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
64 oveq1 5925 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑦 +o 1o) → (𝑧 +o 2o) = ((𝑦 +o 1o) +o 2o))
6564oveq1d 5933 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦 +o 1o) → ((𝑧 +o 2o) +o 𝑋) = (((𝑦 +o 1o) +o 2o) +o 𝑋))
6665opeq1d 3810 . . . . . . . . . . . . . . 15 (𝑧 = (𝑦 +o 1o) → ⟨((𝑧 +o 2o) +o 𝑋), 1o⟩ = ⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩)
6766eceq1d 6623 . . . . . . . . . . . . . 14 (𝑧 = (𝑦 +o 1o) → [⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q = [⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q )
6867oveq1d 5933 . . . . . . . . . . . . 13 (𝑧 = (𝑦 +o 1o) → ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
6968oveq2d 5934 . . . . . . . . . . . 12 (𝑧 = (𝑦 +o 1o) → (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
7069eleq1d 2262 . . . . . . . . . . 11 (𝑧 = (𝑦 +o 1o) → ((𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7163, 70anbi12d 473 . . . . . . . . . 10 (𝑧 = (𝑦 +o 1o) → (((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7271rspcev 2864 . . . . . . . . 9 (((𝑦 +o 1o) ∈ ω ∧ ((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
7372ex 115 . . . . . . . 8 ((𝑦 +o 1o) ∈ ω → (((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
746, 73syl 14 . . . . . . 7 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q0 ([⟨(𝑦 +o 1o), 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
7558, 74sylbid 150 . . . . . 6 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
76 opeq1 3804 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨𝑧, 1o⟩ = ⟨𝑦, 1o⟩)
7776eceq1d 6623 . . . . . . . . . . 11 (𝑧 = 𝑦 → [⟨𝑧, 1o⟩] ~Q0 = [⟨𝑦, 1o⟩] ~Q0 )
7877oveq1d 5933 . . . . . . . . . 10 (𝑧 = 𝑦 → ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃) = ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃))
7978oveq2d 5934 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) = (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)))
8079eleq1d 2262 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ↔ (𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿))
81 oveq1 5925 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 → (𝑧 +o 2o) = (𝑦 +o 2o))
8281oveq1d 5933 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝑧 +o 2o) +o 𝑋) = ((𝑦 +o 2o) +o 𝑋))
8382opeq1d 3810 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨((𝑧 +o 2o) +o 𝑋), 1o⟩ = ⟨((𝑦 +o 2o) +o 𝑋), 1o⟩)
8483eceq1d 6623 . . . . . . . . . . 11 (𝑧 = 𝑦 → [⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q = [⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q )
8584oveq1d 5933 . . . . . . . . . 10 (𝑧 = 𝑦 → ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃) = ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃))
8685oveq2d 5934 . . . . . . . . 9 (𝑧 = 𝑦 → (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) = (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)))
8786eleq1d 2262 . . . . . . . 8 (𝑧 = 𝑦 → ((𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 ↔ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
8880, 87anbi12d 473 . . . . . . 7 (𝑧 = 𝑦 → (((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
8988cbvrexv 2727 . . . . . 6 (∃𝑧 ∈ ω ((𝐴 +Q0 ([⟨𝑧, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑧 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ↔ ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
9075, 89imbitrdi 161 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨(((𝑦 +o 1o) +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9129, 90sylan2d 294 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9291expdimp 259 . . 3 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿) → ((𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9392adantld 278 . 2 ((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿) → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈)))
9493ex 115 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨(𝑦 +o 1o), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝐿 → (((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o suc 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1o⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +o 2o) +o 𝑋), 1o⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wrex 2473  cop 3621  Oncon0 4394  suc csuc 4396  ωcom 4622   × cxp 4657  (class class class)co 5918  1oc1o 6462  2oc2o 6463   +o coa 6466  [cec 6585   / cqs 6586  Ncnpi 7332   ~Q ceq 7339  Qcnq 7340   +Q cplq 7342   ·Q cmq 7343   ~Q0 ceq0 7346   +Q0 cplq0 7349   ·Q0 cmq0 7350  Pcnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-enq0 7484  df-nq0 7485  df-plq0 7487  df-mq0 7488  df-inp 7526
This theorem is referenced by:  prarloclem3step  7556
  Copyright terms: Public domain W3C validator