![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prodgt02 | GIF version |
Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
prodgt02 | โข (((๐ด โ โ โง ๐ต โ โ) โง (0 โค ๐ต โง 0 < (๐ด ยท ๐ต))) โ 0 < ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7962 | . . . . . 6 โข (๐ด โ โ โ ๐ด โ โ) | |
2 | recn 7962 | . . . . . 6 โข (๐ต โ โ โ ๐ต โ โ) | |
3 | mulcom 7958 | . . . . . 6 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) | |
4 | 1, 2, 3 | syl2an 289 | . . . . 5 โข ((๐ด โ โ โง ๐ต โ โ) โ (๐ด ยท ๐ต) = (๐ต ยท ๐ด)) |
5 | 4 | breq2d 4030 | . . . 4 โข ((๐ด โ โ โง ๐ต โ โ) โ (0 < (๐ด ยท ๐ต) โ 0 < (๐ต ยท ๐ด))) |
6 | 5 | biimpd 144 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ (0 < (๐ด ยท ๐ต) โ 0 < (๐ต ยท ๐ด))) |
7 | prodgt0 8827 | . . . . 5 โข (((๐ต โ โ โง ๐ด โ โ) โง (0 โค ๐ต โง 0 < (๐ต ยท ๐ด))) โ 0 < ๐ด) | |
8 | 7 | ex 115 | . . . 4 โข ((๐ต โ โ โง ๐ด โ โ) โ ((0 โค ๐ต โง 0 < (๐ต ยท ๐ด)) โ 0 < ๐ด)) |
9 | 8 | ancoms 268 | . . 3 โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 โค ๐ต โง 0 < (๐ต ยท ๐ด)) โ 0 < ๐ด)) |
10 | 6, 9 | sylan2d 294 | . 2 โข ((๐ด โ โ โง ๐ต โ โ) โ ((0 โค ๐ต โง 0 < (๐ด ยท ๐ต)) โ 0 < ๐ด)) |
11 | 10 | imp 124 | 1 โข (((๐ด โ โ โง ๐ต โ โ) โง (0 โค ๐ต โง 0 < (๐ด ยท ๐ต))) โ 0 < ๐ด) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 โง wa 104 = wceq 1364 โ wcel 2160 class class class wbr 4018 (class class class)co 5891 โcc 7827 โcr 7828 0cc0 7829 ยท cmul 7834 < clt 8010 โค cle 8011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulrcl 7928 ax-addcom 7929 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-i2m1 7934 ax-0lt1 7935 ax-1rid 7936 ax-0id 7937 ax-rnegex 7938 ax-precex 7939 ax-cnre 7940 ax-pre-ltirr 7941 ax-pre-ltwlin 7942 ax-pre-lttrn 7943 ax-pre-apti 7944 ax-pre-ltadd 7945 ax-pre-mulgt0 7946 ax-pre-mulext 7947 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4308 df-po 4311 df-iso 4312 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5233 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-pnf 8012 df-mnf 8013 df-xr 8014 df-ltxr 8015 df-le 8016 df-sub 8148 df-neg 8149 df-reap 8550 df-ap 8557 df-div 8648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |