ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodgt02 GIF version

Theorem prodgt02 8748
Description: Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
Assertion
Ref Expression
prodgt02 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)

Proof of Theorem prodgt02
StepHypRef Expression
1 recn 7886 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 7886 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 mulcom 7882 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
41, 2, 3syl2an 287 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
54breq2d 3994 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 < (𝐵 · 𝐴)))
65biimpd 143 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) → 0 < (𝐵 · 𝐴)))
7 prodgt0 8747 . . . . 5 (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐵 · 𝐴))) → 0 < 𝐴)
87ex 114 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 ≤ 𝐵 ∧ 0 < (𝐵 · 𝐴)) → 0 < 𝐴))
98ancoms 266 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐵 ∧ 0 < (𝐵 · 𝐴)) → 0 < 𝐴))
106, 9sylan2d 292 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵)) → 0 < 𝐴))
1110imp 123 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   · cmul 7758   < clt 7933  cle 7934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator