ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancomsd GIF version

Theorem ancomsd 267
Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.)
Hypothesis
Ref Expression
ancomsd.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
ancomsd (𝜑 → ((𝜒𝜓) → 𝜃))

Proof of Theorem ancomsd
StepHypRef Expression
1 ancom 264 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
2 ancomsd.1 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
31, 2syl5bi 151 1 (𝜑 → ((𝜒𝜓) → 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sylan2d  292  mpand  427  anabsi6  575  ralxfrd  4447  rexxfrd  4448  poirr2  5003  smoel  6279  genprndl  7483  genprndu  7484  addcanprlemu  7577  leltadd  8366  lemul12b  8777  lbzbi  9575  dvdssub2  11797  odzdvds  12199
  Copyright terms: Public domain W3C validator