| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancomsd | GIF version | ||
| Description: Deduction commuting conjunction in antecedent. (Contributed by NM, 12-Dec-2004.) |
| Ref | Expression |
|---|---|
| ancomsd.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| ancomsd | ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 266 | . 2 ⊢ ((𝜒 ∧ 𝜓) ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ancomsd.1 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 3 | 1, 2 | biimtrid 152 | 1 ⊢ (𝜑 → ((𝜒 ∧ 𝜓) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylan2d 294 mpand 429 anabsi6 580 ralxfrd 4498 rexxfrd 4499 poirr2 5063 smoel 6367 genprndl 7605 genprndu 7606 addcanprlemu 7699 leltadd 8491 lemul12b 8905 lbzbi 9707 dvdssub2 12017 odzdvds 12439 |
| Copyright terms: Public domain | W3C validator |