![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cosmul | GIF version |
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd 11747 and cossub 11751. (Contributed by David A. Wheeler, 26-May-2015.) |
Ref | Expression |
---|---|
cosmul | β’ ((π΄ β β β§ π΅ β β) β ((cosβπ΄) Β· (cosβπ΅)) = (((cosβ(π΄ β π΅)) + (cosβ(π΄ + π΅))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl 11717 | . . . . 5 β’ (π΄ β β β (cosβπ΄) β β) | |
2 | coscl 11717 | . . . . 5 β’ (π΅ β β β (cosβπ΅) β β) | |
3 | mulcl 7940 | . . . . 5 β’ (((cosβπ΄) β β β§ (cosβπ΅) β β) β ((cosβπ΄) Β· (cosβπ΅)) β β) | |
4 | 1, 2, 3 | syl2an 289 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((cosβπ΄) Β· (cosβπ΅)) β β) |
5 | 2cn 8992 | . . . . 5 β’ 2 β β | |
6 | 2ap0 9014 | . . . . 5 β’ 2 # 0 | |
7 | 5, 6 | pm3.2i 272 | . . . 4 β’ (2 β β β§ 2 # 0) |
8 | 3anass 982 | . . . 4 β’ ((((cosβπ΄) Β· (cosβπ΅)) β β β§ 2 β β β§ 2 # 0) β (((cosβπ΄) Β· (cosβπ΅)) β β β§ (2 β β β§ 2 # 0))) | |
9 | 4, 7, 8 | sylanblrc 416 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (((cosβπ΄) Β· (cosβπ΅)) β β β§ 2 β β β§ 2 # 0)) |
10 | divcanap3 8657 | . . 3 β’ ((((cosβπ΄) Β· (cosβπ΅)) β β β§ 2 β β β§ 2 # 0) β ((2 Β· ((cosβπ΄) Β· (cosβπ΅))) / 2) = ((cosβπ΄) Β· (cosβπ΅))) | |
11 | 9, 10 | syl 14 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((2 Β· ((cosβπ΄) Β· (cosβπ΅))) / 2) = ((cosβπ΄) Β· (cosβπ΅))) |
12 | sincl 11716 | . . . . . 6 β’ (π΄ β β β (sinβπ΄) β β) | |
13 | sincl 11716 | . . . . . 6 β’ (π΅ β β β (sinβπ΅) β β) | |
14 | mulcl 7940 | . . . . . 6 β’ (((sinβπ΄) β β β§ (sinβπ΅) β β) β ((sinβπ΄) Β· (sinβπ΅)) β β) | |
15 | 12, 13, 14 | syl2an 289 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β ((sinβπ΄) Β· (sinβπ΅)) β β) |
16 | 4, 15, 4 | ppncand 8310 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((((cosβπ΄) Β· (cosβπ΅)) + ((sinβπ΄) Β· (sinβπ΅))) + (((cosβπ΄) Β· (cosβπ΅)) β ((sinβπ΄) Β· (sinβπ΅)))) = (((cosβπ΄) Β· (cosβπ΅)) + ((cosβπ΄) Β· (cosβπ΅)))) |
17 | cossub 11751 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (cosβ(π΄ β π΅)) = (((cosβπ΄) Β· (cosβπ΅)) + ((sinβπ΄) Β· (sinβπ΅)))) | |
18 | cosadd 11747 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (cosβ(π΄ + π΅)) = (((cosβπ΄) Β· (cosβπ΅)) β ((sinβπ΄) Β· (sinβπ΅)))) | |
19 | 17, 18 | oveq12d 5895 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((cosβ(π΄ β π΅)) + (cosβ(π΄ + π΅))) = ((((cosβπ΄) Β· (cosβπ΅)) + ((sinβπ΄) Β· (sinβπ΅))) + (((cosβπ΄) Β· (cosβπ΅)) β ((sinβπ΄) Β· (sinβπ΅))))) |
20 | 4 | 2timesd 9163 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (2 Β· ((cosβπ΄) Β· (cosβπ΅))) = (((cosβπ΄) Β· (cosβπ΅)) + ((cosβπ΄) Β· (cosβπ΅)))) |
21 | 16, 19, 20 | 3eqtr4rd 2221 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (2 Β· ((cosβπ΄) Β· (cosβπ΅))) = ((cosβ(π΄ β π΅)) + (cosβ(π΄ + π΅)))) |
22 | 21 | oveq1d 5892 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((2 Β· ((cosβπ΄) Β· (cosβπ΅))) / 2) = (((cosβ(π΄ β π΅)) + (cosβ(π΄ + π΅))) / 2)) |
23 | 11, 22 | eqtr3d 2212 | 1 β’ ((π΄ β β β§ π΅ β β) β ((cosβπ΄) Β· (cosβπ΅)) = (((cosβ(π΄ β π΅)) + (cosβ(π΄ + π΅))) / 2)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 class class class wbr 4005 βcfv 5218 (class class class)co 5877 βcc 7811 0cc0 7813 + caddc 7816 Β· cmul 7818 β cmin 8130 # cap 8540 / cdiv 8631 2c2 8972 sincsin 11654 cosccos 11655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-frec 6394 df-1o 6419 df-oadd 6423 df-er 6537 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-ico 9896 df-fz 10011 df-fzo 10145 df-seqfrec 10448 df-exp 10522 df-fac 10708 df-bc 10730 df-ihash 10758 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-clim 11289 df-sumdc 11364 df-ef 11658 df-sin 11660 df-cos 11661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |