ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismgmid GIF version

Theorem ismgmid 13418
Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ismgmid.b 𝐵 = (Base‘𝐺)
ismgmid.o 0 = (0g𝐺)
ismgmid.p + = (+g𝐺)
mgmidcl.e (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
Assertion
Ref Expression
ismgmid (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
Distinct variable groups:   𝑥,𝑒, +   0 ,𝑒,𝑥   𝐵,𝑒,𝑥   𝑒,𝐺,𝑥   𝑈,𝑒,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑒)

Proof of Theorem ismgmid
StepHypRef Expression
1 id 19 . . . 4 (𝑈𝐵𝑈𝐵)
2 mgmidcl.e . . . . 5 (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
3 mgmidmo 13413 . . . . 5 ∃*𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
4 reu5 2749 . . . . 5 (∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ (∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ∧ ∃*𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
52, 3, 4sylanblrc 416 . . . 4 (𝜑 → ∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
6 oveq1 6014 . . . . . . 7 (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥))
76eqeq1d 2238 . . . . . 6 (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥))
87ovanraleqv 6031 . . . . 5 (𝑒 = 𝑈 → (∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)))
98riota2 5984 . . . 4 ((𝑈𝐵 ∧ ∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))
101, 5, 9syl2anr 290 . . 3 ((𝜑𝑈𝐵) → (∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))
1110pm5.32da 452 . 2 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ (𝑈𝐵 ∧ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)))
12 riotacl 5976 . . . . 5 (∃!𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵)
135, 12syl 14 . . . 4 (𝜑 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵)
14 eleq1 2292 . . . 4 ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵𝑈𝐵))
1513, 14syl5ibcom 155 . . 3 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈𝑈𝐵))
1615pm4.71rd 394 . 2 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ (𝑈𝐵 ∧ (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)))
17 df-riota 5960 . . . 4 (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
18 rexm 3591 . . . . . . 7 (∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → ∃𝑒 𝑒𝐵)
192, 18syl 14 . . . . . 6 (𝜑 → ∃𝑒 𝑒𝐵)
20 ismgmid.b . . . . . . . 8 𝐵 = (Base‘𝐺)
2120basmex 13100 . . . . . . 7 (𝑒𝐵𝐺 ∈ V)
2221exlimiv 1644 . . . . . 6 (∃𝑒 𝑒𝐵𝐺 ∈ V)
2319, 22syl 14 . . . . 5 (𝜑𝐺 ∈ V)
24 ismgmid.p . . . . . 6 + = (+g𝐺)
25 ismgmid.o . . . . . 6 0 = (0g𝐺)
2620, 24, 25grpidvalg 13414 . . . . 5 (𝐺 ∈ V → 0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
2723, 26syl 14 . . . 4 (𝜑0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
2817, 27eqtr4id 2281 . . 3 (𝜑 → (𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 0 )
2928eqeq1d 2238 . 2 (𝜑 → ((𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈0 = 𝑈))
3011, 16, 293bitr2d 216 1 (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  ∃*wrmo 2511  Vcvv 2799  cio 5276  cfv 5318  crio 5959  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  0gc0g 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-inn 9119  df-ndx 13043  df-slot 13044  df-base 13046  df-0g 13299
This theorem is referenced by:  mgmidcl  13419  mgmlrid  13420  ismgmid2  13421  mgmidsssn0  13425  prds0g  13490  issrgid  13952  isringid  13996
  Copyright terms: Public domain W3C validator