Proof of Theorem ismgmid
| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . 4
⊢ (𝑈 ∈ 𝐵 → 𝑈 ∈ 𝐵) |
| 2 | | mgmidcl.e |
. . . . 5
⊢ (𝜑 → ∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 3 | | mgmidmo 13015 |
. . . . 5
⊢
∃*𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) |
| 4 | | reu5 2714 |
. . . . 5
⊢
(∃!𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ (∃𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ∧ ∃*𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
| 5 | 2, 3, 4 | sylanblrc 416 |
. . . 4
⊢ (𝜑 → ∃!𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 6 | | oveq1 5929 |
. . . . . . 7
⊢ (𝑒 = 𝑈 → (𝑒 + 𝑥) = (𝑈 + 𝑥)) |
| 7 | 6 | eqeq1d 2205 |
. . . . . 6
⊢ (𝑒 = 𝑈 → ((𝑒 + 𝑥) = 𝑥 ↔ (𝑈 + 𝑥) = 𝑥)) |
| 8 | 7 | ovanraleqv 5946 |
. . . . 5
⊢ (𝑒 = 𝑈 → (∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥))) |
| 9 | 8 | riota2 5900 |
. . . 4
⊢ ((𝑈 ∈ 𝐵 ∧ ∃!𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) → (∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)) |
| 10 | 1, 5, 9 | syl2anr 290 |
. . 3
⊢ ((𝜑 ∧ 𝑈 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥) ↔ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈)) |
| 11 | 10 | pm5.32da 452 |
. 2
⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ (𝑈 ∈ 𝐵 ∧ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))) |
| 12 | | riotacl 5892 |
. . . . 5
⊢
(∃!𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵) |
| 13 | 5, 12 | syl 14 |
. . . 4
⊢ (𝜑 → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵) |
| 14 | | eleq1 2259 |
. . . 4
⊢
((℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ∈ 𝐵 ↔ 𝑈 ∈ 𝐵)) |
| 15 | 13, 14 | syl5ibcom 155 |
. . 3
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 → 𝑈 ∈ 𝐵)) |
| 16 | 15 | pm4.71rd 394 |
. 2
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ (𝑈 ∈ 𝐵 ∧ (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈))) |
| 17 | | df-riota 5877 |
. . . 4
⊢
(℩𝑒
∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
| 18 | | rexm 3550 |
. . . . . . 7
⊢
(∃𝑒 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) → ∃𝑒 𝑒 ∈ 𝐵) |
| 19 | 2, 18 | syl 14 |
. . . . . 6
⊢ (𝜑 → ∃𝑒 𝑒 ∈ 𝐵) |
| 20 | | ismgmid.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 21 | 20 | basmex 12737 |
. . . . . . 7
⊢ (𝑒 ∈ 𝐵 → 𝐺 ∈ V) |
| 22 | 21 | exlimiv 1612 |
. . . . . 6
⊢
(∃𝑒 𝑒 ∈ 𝐵 → 𝐺 ∈ V) |
| 23 | 19, 22 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ V) |
| 24 | | ismgmid.p |
. . . . . 6
⊢ + =
(+g‘𝐺) |
| 25 | | ismgmid.o |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 26 | 20, 24, 25 | grpidvalg 13016 |
. . . . 5
⊢ (𝐺 ∈ V → 0 =
(℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
| 27 | 23, 26 | syl 14 |
. . . 4
⊢ (𝜑 → 0 = (℩𝑒(𝑒 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))) |
| 28 | 17, 27 | eqtr4id 2248 |
. . 3
⊢ (𝜑 → (℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 0 ) |
| 29 | 28 | eqeq1d 2205 |
. 2
⊢ (𝜑 → ((℩𝑒 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) = 𝑈 ↔ 0 = 𝑈)) |
| 30 | 11, 16, 29 | 3bitr2d 216 |
1
⊢ (𝜑 → ((𝑈 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈)) |