ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap GIF version

Theorem cdivcncfap 13754
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
Assertion
Ref Expression
cdivcncfap (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cdivcncfap
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
2 simpl 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝐴 ∈ ℂ)
3 breq1 4003 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 # 0 ↔ 𝑥 # 0))
43elrab 2893 . . . . . . . 8 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
54biimpi 120 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
65adantl 277 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
76simpld 112 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 ∈ ℂ)
86simprd 114 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 # 0)
92, 7, 8divrecapd 8739 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝐴 / 𝑥) = (𝐴 · (1 / 𝑥)))
109mpteq2dva 4090 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
11 recclap 8625 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
124, 11sylbi 121 . . . . . 6 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑥) ∈ ℂ)
1312adantl 277 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑥) ∈ ℂ)
14 oveq2 5877 . . . . . . 7 (𝑤 = 𝑥 → (1 / 𝑤) = (1 / 𝑥))
1514cbvmptv 4096 . . . . . 6 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥))
1615a1i 9 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥)))
17 eqidd 2178 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)))
18 oveq2 5877 . . . . 5 (𝑧 = (1 / 𝑥) → (𝐴 · 𝑧) = (𝐴 · (1 / 𝑥)))
1913, 16, 17, 18fmptco 5678 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
20 breq1 4003 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 # 0 ↔ 𝑤 # 0))
2120elrab 2893 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
22 recclap 8625 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 # 0) → (1 / 𝑤) ∈ ℂ)
2321, 22sylbi 121 . . . . . . . 8 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑤) ∈ ℂ)
2423adantl 277 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑤) ∈ ℂ)
2524fmpttd 5667 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ)
26 breq1 4003 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 # 0 ↔ 𝑏 # 0))
2726elrab 2893 . . . . . . . 8 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑏 ∈ ℂ ∧ 𝑏 # 0))
28 eqid 2177 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2)) = (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2))
2928reccn2ap 11305 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
30 eqidd 2178 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)))
31 oveq2 5877 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (1 / 𝑤) = (1 / 𝑎))
3231adantl 277 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑎) → (1 / 𝑤) = (1 / 𝑎))
33 simpr 110 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
34 breq1 4003 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → (𝑦 # 0 ↔ 𝑎 # 0))
3534elrab 2893 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
36 recclap 8625 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑎 # 0) → (1 / 𝑎) ∈ ℂ)
3735, 36sylbi 121 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑎) ∈ ℂ)
3837adantl 277 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑎) ∈ ℂ)
3930, 32, 33, 38fvmptd 5593 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) = (1 / 𝑎))
40 oveq2 5877 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑏 → (1 / 𝑤) = (1 / 𝑏))
4140adantl 277 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑏) → (1 / 𝑤) = (1 / 𝑏))
42 simpll1 1036 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ ℂ)
43 simpll2 1037 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 # 0)
4426, 42, 43elrabd 2895 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
4542, 43recclapd 8727 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑏) ∈ ℂ)
4630, 41, 44, 45fvmptd 5593 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏) = (1 / 𝑏))
4739, 46oveq12d 5887 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏)) = ((1 / 𝑎) − (1 / 𝑏)))
4847fveq2d 5515 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) = (abs‘((1 / 𝑎) − (1 / 𝑏))))
4948breq1d 4010 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒 ↔ (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
5049imbi2d 230 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5150ralbidva 2473 . . . . . . . . . . . 12 (((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5251rexbidva 2474 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5329, 52mpbird 167 . . . . . . . . . 10 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
54533expa 1203 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑏 # 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5554ralrimiva 2550 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑏 # 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5627, 55sylbi 121 . . . . . . 7 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5756rgen 2530 . . . . . 6 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)
58 ssrab2 3240 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
59 ssid 3175 . . . . . . 7 ℂ ⊆ ℂ
60 elcncf2 13728 . . . . . . 7 (({𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))))
6158, 59, 60mp2an 426 . . . . . 6 ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)))
6225, 57, 61sylanblrc 416 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
63 eqid 2177 . . . . . 6 (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧))
6463mulc1cncf 13743 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∈ (ℂ–cn→ℂ))
6562, 64cncfco 13745 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6619, 65eqeltrrd 2255 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6710, 66eqeltrd 2254 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
681, 67eqeltrid 2264 1 (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3129  {cpr 3592   class class class wbr 4000  cmpt 4061  ccom 4627  wf 5208  cfv 5212  (class class class)co 5869  infcinf 6976  cc 7800  cr 7801  0cc0 7802  1c1 7803   · cmul 7807   < clt 7982  cmin 8118   # cap 8528   / cdiv 8618  2c2 8959  +crp 9640  abscabs 10990  cnccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  dvrecap  13844
  Copyright terms: Public domain W3C validator