ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap GIF version

Theorem cdivcncfap 12793
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
Assertion
Ref Expression
cdivcncfap (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cdivcncfap
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
2 simpl 108 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝐴 ∈ ℂ)
3 breq1 3939 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 # 0 ↔ 𝑥 # 0))
43elrab 2843 . . . . . . . 8 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
54biimpi 119 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
65adantl 275 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
76simpld 111 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 ∈ ℂ)
86simprd 113 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 # 0)
92, 7, 8divrecapd 8576 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝐴 / 𝑥) = (𝐴 · (1 / 𝑥)))
109mpteq2dva 4025 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
11 recclap 8462 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
124, 11sylbi 120 . . . . . 6 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑥) ∈ ℂ)
1312adantl 275 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑥) ∈ ℂ)
14 oveq2 5789 . . . . . . 7 (𝑤 = 𝑥 → (1 / 𝑤) = (1 / 𝑥))
1514cbvmptv 4031 . . . . . 6 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥))
1615a1i 9 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥)))
17 eqidd 2141 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)))
18 oveq2 5789 . . . . 5 (𝑧 = (1 / 𝑥) → (𝐴 · 𝑧) = (𝐴 · (1 / 𝑥)))
1913, 16, 17, 18fmptco 5593 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
20 breq1 3939 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 # 0 ↔ 𝑤 # 0))
2120elrab 2843 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
22 recclap 8462 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 # 0) → (1 / 𝑤) ∈ ℂ)
2321, 22sylbi 120 . . . . . . . 8 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑤) ∈ ℂ)
2423adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑤) ∈ ℂ)
2524fmpttd 5582 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ)
26 breq1 3939 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 # 0 ↔ 𝑏 # 0))
2726elrab 2843 . . . . . . . 8 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑏 ∈ ℂ ∧ 𝑏 # 0))
28 eqid 2140 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2)) = (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2))
2928reccn2ap 11113 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
30 eqidd 2141 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)))
31 oveq2 5789 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (1 / 𝑤) = (1 / 𝑎))
3231adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑎) → (1 / 𝑤) = (1 / 𝑎))
33 simpr 109 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
34 breq1 3939 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → (𝑦 # 0 ↔ 𝑎 # 0))
3534elrab 2843 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
36 recclap 8462 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑎 # 0) → (1 / 𝑎) ∈ ℂ)
3735, 36sylbi 120 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑎) ∈ ℂ)
3837adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑎) ∈ ℂ)
3930, 32, 33, 38fvmptd 5509 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) = (1 / 𝑎))
40 oveq2 5789 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑏 → (1 / 𝑤) = (1 / 𝑏))
4140adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑏) → (1 / 𝑤) = (1 / 𝑏))
42 simpll1 1021 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ ℂ)
43 simpll2 1022 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 # 0)
4426, 42, 43elrabd 2845 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
4542, 43recclapd 8564 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑏) ∈ ℂ)
4630, 41, 44, 45fvmptd 5509 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏) = (1 / 𝑏))
4739, 46oveq12d 5799 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏)) = ((1 / 𝑎) − (1 / 𝑏)))
4847fveq2d 5432 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) = (abs‘((1 / 𝑎) − (1 / 𝑏))))
4948breq1d 3946 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒 ↔ (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
5049imbi2d 229 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5150ralbidva 2434 . . . . . . . . . . . 12 (((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5251rexbidva 2435 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5329, 52mpbird 166 . . . . . . . . . 10 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
54533expa 1182 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑏 # 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5554ralrimiva 2508 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑏 # 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5627, 55sylbi 120 . . . . . . 7 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5756rgen 2488 . . . . . 6 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)
58 ssrab2 3186 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
59 ssid 3121 . . . . . . 7 ℂ ⊆ ℂ
60 elcncf2 12767 . . . . . . 7 (({𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))))
6158, 59, 60mp2an 423 . . . . . 6 ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)))
6225, 57, 61sylanblrc 413 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
63 eqid 2140 . . . . . 6 (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧))
6463mulc1cncf 12782 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∈ (ℂ–cn→ℂ))
6562, 64cncfco 12784 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6619, 65eqeltrrd 2218 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6710, 66eqeltrd 2217 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
681, 67eqeltrid 2227 1 (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wral 2417  wrex 2418  {crab 2421  wss 3075  {cpr 3532   class class class wbr 3936  cmpt 3996  ccom 4550  wf 5126  cfv 5130  (class class class)co 5781  infcinf 6877  cc 7641  cr 7642  0cc0 7643  1c1 7644   · cmul 7648   < clt 7823  cmin 7956   # cap 8366   / cdiv 8455  2c2 8794  +crp 9469  abscabs 10800  cnccncf 12763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-map 6551  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-cncf 12764
This theorem is referenced by:  dvrecap  12883
  Copyright terms: Public domain W3C validator