Step | Hyp | Ref
| Expression |
1 | | cdivcncf.1 |
. 2
⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) |
2 | | simpl 108 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝐴 ∈ ℂ) |
3 | | breq1 3990 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 # 0 ↔ 𝑥 # 0)) |
4 | 3 | elrab 2886 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
5 | 4 | biimpi 119 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
6 | 5 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0)) |
7 | 6 | simpld 111 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 ∈ ℂ) |
8 | 6 | simprd 113 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 # 0) |
9 | 2, 7, 8 | divrecapd 8703 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝐴 / 𝑥) = (𝐴 · (1 / 𝑥))) |
10 | 9 | mpteq2dva 4077 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥)))) |
11 | | recclap 8589 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈
ℂ) |
12 | 4, 11 | sylbi 120 |
. . . . . 6
⊢ (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑥) ∈ ℂ) |
13 | 12 | adantl 275 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑥) ∈ ℂ) |
14 | | oveq2 5859 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (1 / 𝑤) = (1 / 𝑥)) |
15 | 14 | cbvmptv 4083 |
. . . . . 6
⊢ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥)) |
16 | 15 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥))) |
17 | | eqidd 2171 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧))) |
18 | | oveq2 5859 |
. . . . 5
⊢ (𝑧 = (1 / 𝑥) → (𝐴 · 𝑧) = (𝐴 · (1 / 𝑥))) |
19 | 13, 16, 17, 18 | fmptco 5660 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥)))) |
20 | | breq1 3990 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑦 # 0 ↔ 𝑤 # 0)) |
21 | 20 | elrab 2886 |
. . . . . . . . 9
⊢ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0)) |
22 | | recclap 8589 |
. . . . . . . . 9
⊢ ((𝑤 ∈ ℂ ∧ 𝑤 # 0) → (1 / 𝑤) ∈
ℂ) |
23 | 21, 22 | sylbi 120 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑤) ∈ ℂ) |
24 | 23 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑤) ∈ ℂ) |
25 | 24 | fmpttd 5649 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ) |
26 | | breq1 3990 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → (𝑦 # 0 ↔ 𝑏 # 0)) |
27 | 26 | elrab 2886 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑏 ∈ ℂ ∧ 𝑏 # 0)) |
28 | | eqid 2170 |
. . . . . . . . . . . 12
⊢ (inf({1,
((abs‘𝑏) ·
𝑒)}, ℝ, < )
· ((abs‘𝑏) /
2)) = (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) ·
((abs‘𝑏) /
2)) |
29 | 28 | reccn2ap 11269 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) →
∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)) |
30 | | eqidd 2171 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) |
31 | | oveq2 5859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑎 → (1 / 𝑤) = (1 / 𝑎)) |
32 | 31 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑏 ∈
ℂ ∧ 𝑏 # 0 ∧
𝑒 ∈
ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑎) → (1 / 𝑤) = (1 / 𝑎)) |
33 | | simpr 109 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
34 | | breq1 3990 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑎 → (𝑦 # 0 ↔ 𝑎 # 0)) |
35 | 34 | elrab 2886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0)) |
36 | | recclap 8589 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑎 ∈ ℂ ∧ 𝑎 # 0) → (1 / 𝑎) ∈
ℂ) |
37 | 35, 36 | sylbi 120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑎) ∈ ℂ) |
38 | 37 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑎) ∈
ℂ) |
39 | 30, 32, 33, 38 | fvmptd 5575 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) = (1 / 𝑎)) |
40 | | oveq2 5859 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑏 → (1 / 𝑤) = (1 / 𝑏)) |
41 | 40 | adantl 275 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑏 ∈
ℂ ∧ 𝑏 # 0 ∧
𝑒 ∈
ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑏) → (1 / 𝑤) = (1 / 𝑏)) |
42 | | simpll1 1031 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ ℂ) |
43 | | simpll2 1032 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 # 0) |
44 | 26, 42, 43 | elrabd 2888 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) |
45 | 42, 43 | recclapd 8691 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑏) ∈
ℂ) |
46 | 30, 41, 44, 45 | fvmptd 5575 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏) = (1 / 𝑏)) |
47 | 39, 46 | oveq12d 5869 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏)) = ((1 / 𝑎) − (1 / 𝑏))) |
48 | 47 | fveq2d 5498 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) →
(abs‘(((𝑤 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) = (abs‘((1 / 𝑎) − (1 / 𝑏)))) |
49 | 48 | breq1d 3997 |
. . . . . . . . . . . . . 14
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) →
((abs‘(((𝑤 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒 ↔ (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)) |
50 | 49 | imbi2d 229 |
. . . . . . . . . . . . 13
⊢ ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) →
(((abs‘(𝑎 −
𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))) |
51 | 50 | ralbidva 2466 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+)
→ (∀𝑎 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))) |
52 | 51 | rexbidva 2467 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) →
(∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∃𝑑 ∈ ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))) |
53 | 29, 52 | mpbird 166 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) →
∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)) |
54 | 53 | 3expa 1198 |
. . . . . . . . 9
⊢ (((𝑏 ∈ ℂ ∧ 𝑏 # 0) ∧ 𝑒 ∈ ℝ+) →
∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)) |
55 | 54 | ralrimiva 2543 |
. . . . . . . 8
⊢ ((𝑏 ∈ ℂ ∧ 𝑏 # 0) → ∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)) |
56 | 27, 55 | sylbi 120 |
. . . . . . 7
⊢ (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)) |
57 | 56 | rgen 2523 |
. . . . . 6
⊢
∀𝑏 ∈
{𝑦 ∈ ℂ ∣
𝑦 # 0}∀𝑒 ∈ ℝ+
∃𝑑 ∈
ℝ+ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) |
58 | | ssrab2 3232 |
. . . . . . 7
⊢ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆
ℂ |
59 | | ssid 3167 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
60 | | elcncf2 13320 |
. . . . . . 7
⊢ (({𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ ∧
ℂ ⊆ ℂ) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)))) |
61 | 58, 59, 60 | mp2an 424 |
. . . . . 6
⊢ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎 − 𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))) |
62 | 25, 57, 61 | sylanblrc 414 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
63 | | eqid 2170 |
. . . . . 6
⊢ (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) |
64 | 63 | mulc1cncf 13335 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∈ (ℂ–cn→ℂ)) |
65 | 62, 64 | cncfco 13337 |
. . . 4
⊢ (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
66 | 19, 65 | eqeltrrd 2248 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
67 | 10, 66 | eqeltrd 2247 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
68 | 1, 67 | eqeltrid 2257 |
1
⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |