ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap GIF version

Theorem cdivcncfap 12756
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
Assertion
Ref Expression
cdivcncfap (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cdivcncfap
Dummy variables 𝑤 𝑧 𝑎 𝑏 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))
2 simpl 108 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝐴 ∈ ℂ)
3 breq1 3932 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 # 0 ↔ 𝑥 # 0))
43elrab 2840 . . . . . . . 8 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑥 ∈ ℂ ∧ 𝑥 # 0))
54biimpi 119 . . . . . . 7 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
65adantl 275 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑥 ∈ ℂ ∧ 𝑥 # 0))
76simpld 111 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 ∈ ℂ)
86simprd 113 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑥 # 0)
92, 7, 8divrecapd 8553 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝐴 / 𝑥) = (𝐴 · (1 / 𝑥)))
109mpteq2dva 4018 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
11 recclap 8439 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℂ)
124, 11sylbi 120 . . . . . 6 (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑥) ∈ ℂ)
1312adantl 275 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑥) ∈ ℂ)
14 oveq2 5782 . . . . . . 7 (𝑤 = 𝑥 → (1 / 𝑤) = (1 / 𝑥))
1514cbvmptv 4024 . . . . . 6 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥))
1615a1i 9 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑥)))
17 eqidd 2140 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)))
18 oveq2 5782 . . . . 5 (𝑧 = (1 / 𝑥) → (𝐴 · 𝑧) = (𝐴 · (1 / 𝑥)))
1913, 16, 17, 18fmptco 5586 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))))
20 breq1 3932 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 # 0 ↔ 𝑤 # 0))
2120elrab 2840 . . . . . . . . 9 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑤 ∈ ℂ ∧ 𝑤 # 0))
22 recclap 8439 . . . . . . . . 9 ((𝑤 ∈ ℂ ∧ 𝑤 # 0) → (1 / 𝑤) ∈ ℂ)
2321, 22sylbi 120 . . . . . . . 8 (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑤) ∈ ℂ)
2423adantl 275 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑤) ∈ ℂ)
2524fmpttd 5575 . . . . . 6 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ)
26 breq1 3932 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 # 0 ↔ 𝑏 # 0))
2726elrab 2840 . . . . . . . 8 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑏 ∈ ℂ ∧ 𝑏 # 0))
28 eqid 2139 . . . . . . . . . . . 12 (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2)) = (inf({1, ((abs‘𝑏) · 𝑒)}, ℝ, < ) · ((abs‘𝑏) / 2))
2928reccn2ap 11082 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
30 eqidd 2140 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) = (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)))
31 oveq2 5782 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (1 / 𝑤) = (1 / 𝑎))
3231adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑎) → (1 / 𝑤) = (1 / 𝑎))
33 simpr 109 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
34 breq1 3932 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑎 → (𝑦 # 0 ↔ 𝑎 # 0))
3534elrab 2840 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↔ (𝑎 ∈ ℂ ∧ 𝑎 # 0))
36 recclap 8439 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℂ ∧ 𝑎 # 0) → (1 / 𝑎) ∈ ℂ)
3735, 36sylbi 120 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → (1 / 𝑎) ∈ ℂ)
3837adantl 275 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑎) ∈ ℂ)
3930, 32, 33, 38fvmptd 5502 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) = (1 / 𝑎))
40 oveq2 5782 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑏 → (1 / 𝑤) = (1 / 𝑏))
4140adantl 275 . . . . . . . . . . . . . . . . . 18 (((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) ∧ 𝑤 = 𝑏) → (1 / 𝑤) = (1 / 𝑏))
42 simpll1 1020 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ ℂ)
43 simpll2 1021 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 # 0)
4426, 42, 43elrabd 2842 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0})
4542, 43recclapd 8541 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (1 / 𝑏) ∈ ℂ)
4630, 41, 44, 45fvmptd 5502 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏) = (1 / 𝑏))
4739, 46oveq12d 5792 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏)) = ((1 / 𝑎) − (1 / 𝑏)))
4847fveq2d 5425 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) = (abs‘((1 / 𝑎) − (1 / 𝑏))))
4948breq1d 3939 . . . . . . . . . . . . . 14 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → ((abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒 ↔ (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒))
5049imbi2d 229 . . . . . . . . . . . . 13 ((((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}) → (((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5150ralbidva 2433 . . . . . . . . . . . 12 (((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∀𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5251rexbidva 2434 . . . . . . . . . . 11 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘((1 / 𝑎) − (1 / 𝑏))) < 𝑒)))
5329, 52mpbird 166 . . . . . . . . . 10 ((𝑏 ∈ ℂ ∧ 𝑏 # 0 ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
54533expa 1181 . . . . . . . . 9 (((𝑏 ∈ ℂ ∧ 𝑏 # 0) ∧ 𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5554ralrimiva 2505 . . . . . . . 8 ((𝑏 ∈ ℂ ∧ 𝑏 # 0) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5627, 55sylbi 120 . . . . . . 7 (𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))
5756rgen 2485 . . . . . 6 𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)
58 ssrab2 3182 . . . . . . 7 {𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ
59 ssid 3117 . . . . . . 7 ℂ ⊆ ℂ
60 elcncf2 12730 . . . . . . 7 (({𝑦 ∈ ℂ ∣ 𝑦 # 0} ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒))))
6158, 59, 60mp2an 422 . . . . . 6 ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ) ↔ ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)):{𝑦 ∈ ℂ ∣ 𝑦 # 0}⟶ℂ ∧ ∀𝑏 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0}∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ((abs‘(𝑎𝑏)) < 𝑑 → (abs‘(((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑎) − ((𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))‘𝑏))) < 𝑒)))
6225, 57, 61sylanblrc 412 . . . . 5 (𝐴 ∈ ℂ → (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
63 eqid 2139 . . . . . 6 (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) = (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧))
6463mulc1cncf 12745 . . . . 5 (𝐴 ∈ ℂ → (𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∈ (ℂ–cn→ℂ))
6562, 64cncfco 12747 . . . 4 (𝐴 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝐴 · 𝑧)) ∘ (𝑤 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (1 / 𝑤))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6619, 65eqeltrrd 2217 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 · (1 / 𝑥))) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
6710, 66eqeltrd 2216 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
681, 67eqeltrid 2226 1 (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2416  wrex 2417  {crab 2420  wss 3071  {cpr 3528   class class class wbr 3929  cmpt 3989  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  infcinf 6870  cc 7618  cr 7619  0cc0 7620  1c1 7621   · cmul 7625   < clt 7800  cmin 7933   # cap 8343   / cdiv 8432  2c2 8771  +crp 9441  abscabs 10769  cnccncf 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-cncf 12727
This theorem is referenced by:  dvrecap  12846
  Copyright terms: Public domain W3C validator