Step | Hyp | Ref
| Expression |
1 | | cdivcncf.1 |
. 2
β’ πΉ = (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ / π₯)) |
2 | | simpl 109 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β π΄ β β) |
3 | | breq1 4006 |
. . . . . . . . 9
β’ (π¦ = π₯ β (π¦ # 0 β π₯ # 0)) |
4 | 3 | elrab 2893 |
. . . . . . . 8
β’ (π₯ β {π¦ β β β£ π¦ # 0} β (π₯ β β β§ π₯ # 0)) |
5 | 4 | biimpi 120 |
. . . . . . 7
β’ (π₯ β {π¦ β β β£ π¦ # 0} β (π₯ β β β§ π₯ # 0)) |
6 | 5 | adantl 277 |
. . . . . 6
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β (π₯ β β β§ π₯ # 0)) |
7 | 6 | simpld 112 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β π₯ β β) |
8 | 6 | simprd 114 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β π₯ # 0) |
9 | 2, 7, 8 | divrecapd 8749 |
. . . 4
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β (π΄ / π₯) = (π΄ Β· (1 / π₯))) |
10 | 9 | mpteq2dva 4093 |
. . 3
β’ (π΄ β β β (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ / π₯)) = (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ Β· (1 / π₯)))) |
11 | | recclap 8635 |
. . . . . . 7
β’ ((π₯ β β β§ π₯ # 0) β (1 / π₯) β
β) |
12 | 4, 11 | sylbi 121 |
. . . . . 6
β’ (π₯ β {π¦ β β β£ π¦ # 0} β (1 / π₯) β β) |
13 | 12 | adantl 277 |
. . . . 5
β’ ((π΄ β β β§ π₯ β {π¦ β β β£ π¦ # 0}) β (1 / π₯) β β) |
14 | | oveq2 5882 |
. . . . . . 7
β’ (π€ = π₯ β (1 / π€) = (1 / π₯)) |
15 | 14 | cbvmptv 4099 |
. . . . . 6
β’ (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) = (π₯ β {π¦ β β β£ π¦ # 0} β¦ (1 / π₯)) |
16 | 15 | a1i 9 |
. . . . 5
β’ (π΄ β β β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) = (π₯ β {π¦ β β β£ π¦ # 0} β¦ (1 / π₯))) |
17 | | eqidd 2178 |
. . . . 5
β’ (π΄ β β β (π§ β β β¦ (π΄ Β· π§)) = (π§ β β β¦ (π΄ Β· π§))) |
18 | | oveq2 5882 |
. . . . 5
β’ (π§ = (1 / π₯) β (π΄ Β· π§) = (π΄ Β· (1 / π₯))) |
19 | 13, 16, 17, 18 | fmptco 5682 |
. . . 4
β’ (π΄ β β β ((π§ β β β¦ (π΄ Β· π§)) β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))) = (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ Β· (1 / π₯)))) |
20 | | breq1 4006 |
. . . . . . . . . 10
β’ (π¦ = π€ β (π¦ # 0 β π€ # 0)) |
21 | 20 | elrab 2893 |
. . . . . . . . 9
β’ (π€ β {π¦ β β β£ π¦ # 0} β (π€ β β β§ π€ # 0)) |
22 | | recclap 8635 |
. . . . . . . . 9
β’ ((π€ β β β§ π€ # 0) β (1 / π€) β
β) |
23 | 21, 22 | sylbi 121 |
. . . . . . . 8
β’ (π€ β {π¦ β β β£ π¦ # 0} β (1 / π€) β β) |
24 | 23 | adantl 277 |
. . . . . . 7
β’ ((π΄ β β β§ π€ β {π¦ β β β£ π¦ # 0}) β (1 / π€) β β) |
25 | 24 | fmpttd 5671 |
. . . . . 6
β’ (π΄ β β β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)):{π¦ β β β£ π¦ # 0}βΆβ) |
26 | | breq1 4006 |
. . . . . . . . 9
β’ (π¦ = π β (π¦ # 0 β π # 0)) |
27 | 26 | elrab 2893 |
. . . . . . . 8
β’ (π β {π¦ β β β£ π¦ # 0} β (π β β β§ π # 0)) |
28 | | eqid 2177 |
. . . . . . . . . . . 12
β’ (inf({1,
((absβπ) Β·
π)}, β, < )
Β· ((absβπ) /
2)) = (inf({1, ((absβπ) Β· π)}, β, < ) Β·
((absβπ) /
2)) |
29 | 28 | reccn2ap 11320 |
. . . . . . . . . . 11
β’ ((π β β β§ π # 0 β§ π β β+) β
βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ((1 / π) β (1 / π))) < π)) |
30 | | eqidd 2178 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) = (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))) |
31 | | oveq2 5882 |
. . . . . . . . . . . . . . . . . . 19
β’ (π€ = π β (1 / π€) = (1 / π)) |
32 | 31 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β
β β§ π # 0 β§
π β
β+) β§ π β β+) β§ π β {π¦ β β β£ π¦ # 0}) β§ π€ = π) β (1 / π€) = (1 / π)) |
33 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β π β {π¦ β β β£ π¦ # 0}) |
34 | | breq1 4006 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π¦ = π β (π¦ # 0 β π # 0)) |
35 | 34 | elrab 2893 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β {π¦ β β β£ π¦ # 0} β (π β β β§ π # 0)) |
36 | | recclap 8635 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β β β§ π # 0) β (1 / π) β
β) |
37 | 35, 36 | sylbi 121 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β {π¦ β β β£ π¦ # 0} β (1 / π) β β) |
38 | 37 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β (1 / π) β
β) |
39 | 30, 32, 33, 38 | fvmptd 5597 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) = (1 / π)) |
40 | | oveq2 5882 |
. . . . . . . . . . . . . . . . . . 19
β’ (π€ = π β (1 / π€) = (1 / π)) |
41 | 40 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
β’
(((((π β
β β§ π # 0 β§
π β
β+) β§ π β β+) β§ π β {π¦ β β β£ π¦ # 0}) β§ π€ = π) β (1 / π€) = (1 / π)) |
42 | | simpll1 1036 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β π β β) |
43 | | simpll2 1037 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β π # 0) |
44 | 26, 42, 43 | elrabd 2895 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β π β {π¦ β β β£ π¦ # 0}) |
45 | 42, 43 | recclapd 8737 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β (1 / π) β
β) |
46 | 30, 41, 44, 45 | fvmptd 5597 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) = (1 / π)) |
47 | 39, 46 | oveq12d 5892 |
. . . . . . . . . . . . . . . 16
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β (((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ)) = ((1 / π) β (1 / π))) |
48 | 47 | fveq2d 5519 |
. . . . . . . . . . . . . . 15
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β
(absβ(((π€ β
{π¦ β β β£
π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) = (absβ((1 / π) β (1 / π)))) |
49 | 48 | breq1d 4013 |
. . . . . . . . . . . . . 14
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β
((absβ(((π€ β
{π¦ β β β£
π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π β (absβ((1 / π) β (1 / π))) < π)) |
50 | 49 | imbi2d 230 |
. . . . . . . . . . . . 13
β’ ((((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β§ π β {π¦ β β β£ π¦ # 0}) β
(((absβ(π β
π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π) β ((absβ(π β π)) < π β (absβ((1 / π) β (1 / π))) < π))) |
51 | 50 | ralbidva 2473 |
. . . . . . . . . . . 12
β’ (((π β β β§ π # 0 β§ π β β+) β§ π β β+)
β (βπ β
{π¦ β β β£
π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π) β βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ((1 / π) β (1 / π))) < π))) |
52 | 51 | rexbidva 2474 |
. . . . . . . . . . 11
β’ ((π β β β§ π # 0 β§ π β β+) β
(βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π) β βπ β β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ((1 / π) β (1 / π))) < π))) |
53 | 29, 52 | mpbird 167 |
. . . . . . . . . 10
β’ ((π β β β§ π # 0 β§ π β β+) β
βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π)) |
54 | 53 | 3expa 1203 |
. . . . . . . . 9
β’ (((π β β β§ π # 0) β§ π β β+) β
βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π)) |
55 | 54 | ralrimiva 2550 |
. . . . . . . 8
β’ ((π β β β§ π # 0) β βπ β β+
βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π)) |
56 | 27, 55 | sylbi 121 |
. . . . . . 7
β’ (π β {π¦ β β β£ π¦ # 0} β βπ β β+ βπ β β+
βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π)) |
57 | 56 | rgen 2530 |
. . . . . 6
β’
βπ β
{π¦ β β β£
π¦ # 0}βπ β β+
βπ β
β+ βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π) |
58 | | ssrab2 3240 |
. . . . . . 7
β’ {π¦ β β β£ π¦ # 0} β
β |
59 | | ssid 3175 |
. . . . . . 7
β’ β
β β |
60 | | elcncf2 13997 |
. . . . . . 7
β’ (({π¦ β β β£ π¦ # 0} β β β§
β β β) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) β ({π¦ β β β£ π¦ # 0}βcnββ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)):{π¦ β β β£ π¦ # 0}βΆβ β§ βπ β {π¦ β β β£ π¦ # 0}βπ β β+ βπ β β+
βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π)))) |
61 | 58, 59, 60 | mp2an 426 |
. . . . . 6
β’ ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) β ({π¦ β β β£ π¦ # 0}βcnββ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)):{π¦ β β β£ π¦ # 0}βΆβ β§ βπ β {π¦ β β β£ π¦ # 0}βπ β β+ βπ β β+
βπ β {π¦ β β β£ π¦ # 0} ((absβ(π β π)) < π β (absβ(((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ) β ((π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))βπ))) < π))) |
62 | 25, 57, 61 | sylanblrc 416 |
. . . . 5
β’ (π΄ β β β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€)) β ({π¦ β β β£ π¦ # 0}βcnββ)) |
63 | | eqid 2177 |
. . . . . 6
β’ (π§ β β β¦ (π΄ Β· π§)) = (π§ β β β¦ (π΄ Β· π§)) |
64 | 63 | mulc1cncf 14012 |
. . . . 5
β’ (π΄ β β β (π§ β β β¦ (π΄ Β· π§)) β (ββcnββ)) |
65 | 62, 64 | cncfco 14014 |
. . . 4
β’ (π΄ β β β ((π§ β β β¦ (π΄ Β· π§)) β (π€ β {π¦ β β β£ π¦ # 0} β¦ (1 / π€))) β ({π¦ β β β£ π¦ # 0}βcnββ)) |
66 | 19, 65 | eqeltrrd 2255 |
. . 3
β’ (π΄ β β β (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ Β· (1 / π₯))) β ({π¦ β β β£ π¦ # 0}βcnββ)) |
67 | 10, 66 | eqeltrd 2254 |
. 2
β’ (π΄ β β β (π₯ β {π¦ β β β£ π¦ # 0} β¦ (π΄ / π₯)) β ({π¦ β β β£ π¦ # 0}βcnββ)) |
68 | 1, 67 | eqeltrid 2264 |
1
β’ (π΄ β β β πΉ β ({π¦ β β β£ π¦ # 0}βcnββ)) |