| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . 2 ⊢ 𝜑 | |
| 2 | ibar 301 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 946 truan 1412 rexv 2818 reuv 2819 rmov 2820 rabab 2821 euxfrdc 2989 euind 2990 dfdif3 3314 ddifstab 3336 vss 3539 mptv 4180 regexmidlem1 4624 peano5 4689 intirr 5114 fvopab6 5730 riotav 5959 mpov 6093 brtpos0 6396 frec0g 6541 inl11 7228 apreim 8746 ccatlcan 11245 clim0 11791 gcd0id 12495 nnwosdc 12555 gsum0g 13424 isbasis3g 14714 opnssneib 14824 ssidcn 14878 bj-d0clsepcl 16246 |
| Copyright terms: Public domain | W3C validator |