| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . 2 ⊢ 𝜑 | |
| 2 | ibar 301 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 942 truan 1389 rexv 2789 reuv 2790 rmov 2791 rabab 2792 euxfrdc 2958 euind 2959 dfdif3 3282 ddifstab 3304 vss 3507 mptv 4140 regexmidlem1 4580 peano5 4645 intirr 5068 fvopab6 5675 riotav 5904 mpov 6034 brtpos0 6337 frec0g 6482 inl11 7166 apreim 8675 clim0 11567 gcd0id 12271 nnwosdc 12331 gsum0g 13199 isbasis3g 14489 opnssneib 14599 ssidcn 14653 bj-d0clsepcl 15823 |
| Copyright terms: Public domain | W3C validator |