Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrur | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . 2 ⊢ 𝜑 | |
2 | ibar 299 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbiran 935 truan 1365 rexv 2748 reuv 2749 rmov 2750 rabab 2751 euxfrdc 2916 euind 2917 dfdif3 3237 ddifstab 3259 vss 3462 mptv 4086 regexmidlem1 4517 peano5 4582 intirr 4997 fvopab6 5592 riotav 5814 mpov 5943 brtpos0 6231 frec0g 6376 inl11 7042 apreim 8522 clim0 11248 gcd0id 11934 nnwosdc 11994 isbasis3g 12838 opnssneib 12950 ssidcn 13004 bj-d0clsepcl 13960 |
Copyright terms: Public domain | W3C validator |