ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantrur GIF version

Theorem biantrur 303
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.)
Hypothesis
Ref Expression
biantrur.1 𝜑
Assertion
Ref Expression
biantrur (𝜓 ↔ (𝜑𝜓))

Proof of Theorem biantrur
StepHypRef Expression
1 biantrur.1 . 2 𝜑
2 ibar 301 . 2 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
31, 2ax-mp 5 1 (𝜓 ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mpbiran  946  truan  1412  rexv  2818  reuv  2819  rmov  2820  rabab  2821  euxfrdc  2989  euind  2990  dfdif3  3314  ddifstab  3336  vss  3539  mptv  4180  regexmidlem1  4624  peano5  4689  intirr  5114  fvopab6  5730  riotav  5959  mpov  6093  brtpos0  6396  frec0g  6541  inl11  7228  apreim  8746  ccatlcan  11245  clim0  11791  gcd0id  12495  nnwosdc  12555  gsum0g  13424  isbasis3g  14714  opnssneib  14824  ssidcn  14878  bj-d0clsepcl  16246
  Copyright terms: Public domain W3C validator