Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biantrur | GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . 2 ⊢ 𝜑 | |
2 | ibar 299 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: mpbiran 930 truan 1360 rexv 2744 reuv 2745 rmov 2746 rabab 2747 euxfrdc 2912 euind 2913 dfdif3 3232 ddifstab 3254 vss 3456 mptv 4079 regexmidlem1 4510 peano5 4575 intirr 4990 fvopab6 5582 riotav 5803 mpov 5932 brtpos0 6220 frec0g 6365 inl11 7030 apreim 8501 clim0 11226 gcd0id 11912 nnwosdc 11972 isbasis3g 12684 opnssneib 12796 ssidcn 12850 bj-d0clsepcl 13807 |
Copyright terms: Public domain | W3C validator |