| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . 2 ⊢ 𝜑 | |
| 2 | ibar 301 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 942 truan 1381 rexv 2781 reuv 2782 rmov 2783 rabab 2784 euxfrdc 2950 euind 2951 dfdif3 3274 ddifstab 3296 vss 3499 mptv 4131 regexmidlem1 4570 peano5 4635 intirr 5057 fvopab6 5661 riotav 5886 mpov 6016 brtpos0 6319 frec0g 6464 inl11 7140 apreim 8647 clim0 11467 gcd0id 12171 nnwosdc 12231 gsum0g 13098 isbasis3g 14366 opnssneib 14476 ssidcn 14530 bj-d0clsepcl 15655 |
| Copyright terms: Public domain | W3C validator |