| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . 2 ⊢ 𝜑 | |
| 2 | ibar 301 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 943 truan 1390 rexv 2790 reuv 2791 rmov 2792 rabab 2793 euxfrdc 2959 euind 2960 dfdif3 3283 ddifstab 3305 vss 3508 mptv 4141 regexmidlem1 4581 peano5 4646 intirr 5069 fvopab6 5676 riotav 5905 mpov 6035 brtpos0 6338 frec0g 6483 inl11 7167 apreim 8676 clim0 11596 gcd0id 12300 nnwosdc 12360 gsum0g 13228 isbasis3g 14518 opnssneib 14628 ssidcn 14682 bj-d0clsepcl 15861 |
| Copyright terms: Public domain | W3C validator |