| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | GIF version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 | . 2 ⊢ 𝜑 | |
| 2 | ibar 301 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 943 truan 1390 rexv 2792 reuv 2793 rmov 2794 rabab 2795 euxfrdc 2963 euind 2964 dfdif3 3287 ddifstab 3309 vss 3512 mptv 4152 regexmidlem1 4594 peano5 4659 intirr 5083 fvopab6 5694 riotav 5923 mpov 6053 brtpos0 6356 frec0g 6501 inl11 7188 apreim 8706 ccatlcan 11204 clim0 11681 gcd0id 12385 nnwosdc 12445 gsum0g 13313 isbasis3g 14603 opnssneib 14713 ssidcn 14767 bj-d0clsepcl 16030 |
| Copyright terms: Public domain | W3C validator |